#include #include #include #include #include #include #include #ifdef __APPLE__ #include "pthread_barrier.h" #endif // Data shared for al threads typedef struct { // Number of teams given by user, two threads are created for each team size_t team_count; // Time in milliseconds that threads wait in stage 1: from start to the partner unsigned stage_time_1; // Time in milliseconds that threads wait in stage 2: from partner to the finish unsigned stage_time_2; // Counter located at the finish used to know the position each thread reach size_t position; // A barrier is used at the start of the race to simulate threads departing at the same time pthread_barrier_t starting_barrier; // An array of semaphores, one for each team, to simulate the batons. Initially, runner 2 of // the team will be waiting for the semaphore. When runner 1 reaches runner 2, runner 1 will // post to the semaphore sem_t* baton_semaphores; // A mutex at the finish of the race allows only one runner at time claiming its position pthread_mutex_t finish_mutex; } shared_data_t; // Private thread data: each thread has its own record typedef struct { // The number of the thread: range [0, team_count[ identifies runners from start to the middle // while range [team_count, 2*team_count[ identify runners from middle to the finish size_t thread_id; // Pointer to the shared data record for all threads shared_data_t* shared_data; } private_data_t; int analyze_arguments(int argc, char* argv[], shared_data_t* shared_data); void* start_race(void* data); void* finish_race(void* data); int main(int argc, char* argv[]) { // Fill the shared data with the values from the arguments shared_data_t shared_data; int error = analyze_arguments(argc, argv, &shared_data); if ( error ) return error; // Init synchronization controls in shared data shared_data.position = 0; pthread_barrier_init( &shared_data.starting_barrier, NULL, shared_data.team_count ); pthread_mutex_init( &shared_data.finish_mutex, NULL ); // Init the semaphores used as batons, one for each team shared_data.baton_semaphores = (sem_t*) calloc( shared_data.team_count, sizeof(sem_t) ); if ( shared_data.baton_semaphores == NULL ) return (void)fprintf(stderr, "hello_w: error: could not allocate memory for: %zu semaphores\n", shared_data.team_count), 5; // Create records to control each thread, two per team const size_t thread_count = 2 * shared_data.team_count; pthread_t* threads = (pthread_t*) malloc(thread_count * sizeof(pthread_t)); if ( threads == NULL ) return (void)fprintf(stderr, "hello_w: error: could not allocate memory for: %zu threads\n", thread_count), 6; // Create a private record, one for each thread (two per team) private_data_t* private_data = (private_data_t*) calloc(thread_count, sizeof(private_data_t)); // Get a time snapshot to calculate the duration later struct timespec start_time; clock_gettime(CLOCK_MONOTONIC, &start_time); // Create the threads, two for each team #ifdef INVERTED_TEAM_ORDER for ( size_t team = shared_data.team_count - 1; team <= shared_data.team_count - 1; --team ) #else for ( size_t team = 0; team < shared_data.team_count; ++team ) #endif { // Create the team's thread that starts the race private_data[team].thread_id = team; private_data[team].shared_data = &shared_data; pthread_create(&threads[team], NULL, start_race, private_data + team); // Create the partner team's thread that finishes the race const size_t partner = team + shared_data.team_count; assert(partner < thread_count); private_data[partner].thread_id = partner; private_data[partner].shared_data = &shared_data; pthread_create(&threads[partner], NULL, finish_race, private_data + partner); } // Wait until the race finishes for ( size_t index = 0; index < thread_count; ++index ) pthread_join(threads[index], NULL); // Get the finish time as another time snapshot struct timespec finish_time; clock_gettime(CLOCK_MONOTONIC, &finish_time); // Calculate the simulation time const double seconds = finish_time.tv_sec - start_time.tv_sec + (finish_time.tv_nsec - start_time.tv_nsec) * 1e-9; printf("Simulation time: %.9lfs\n", seconds); // Release synchronization mechanisms pthread_mutex_destroy(&shared_data.finish_mutex); pthread_barrier_destroy( &shared_data.starting_barrier ); // Release heap memory free(shared_data.baton_semaphores); free(private_data); free(threads); return EXIT_SUCCESS; } int analyze_arguments(int argc, char* argv[], shared_data_t* shared_data) { // Three paramets are mandatory if ( argc != 4 ) return (void)fprintf(stderr, "usage: relay_race \n"), 1; // Convert text arguments to the shared integer values if ( sscanf(argv[1], "%zu", &shared_data->team_count) != 1 || shared_data->team_count == 0 ) return (void)fprintf(stderr, "hello_w: error: invalid team count: %s\n", argv[1]), 2; if ( sscanf(argv[2], "%u", &shared_data->stage_time_1) != 1 ) return (void)fprintf(stderr, "hello_w: error: invalid stage time 1: %s\n", argv[2]), 3; if ( sscanf(argv[3], "%u", &shared_data->stage_time_2) != 1 ) return (void)fprintf(stderr, "hello_w: error: invalid stage time 2: %s\n", argv[3]), 4; return 0; } // Threads that depart from the start, execute this function. They goal is to give the baton // to their partners as fast as they can void* start_race(void* data) { // Get pointers to the private and shared data private_data_t* private_data = (private_data_t*)data; shared_data_t* shared_data = private_data->shared_data; // Wait at the starting line pthread_barrier_wait( &shared_data->starting_barrier ); // The race started! Traverse the stage 1. It takes time usleep( 1000 * shared_data->stage_time_1 ); // I reached my partner, give it the baton const size_t team_id = private_data->thread_id; sem_post( &shared_data->baton_semaphores[team_id] ); // I finished my race return NULL; } void* finish_race(void* data) { // Get pointers to the private and shared data private_data_t* private_data = (private_data_t*)data; shared_data_t* shared_data = private_data->shared_data; // I wait until my partner gives me the baton size_t team_id = private_data->thread_id - shared_data->team_count; assert(team_id < shared_data->team_count); sem_wait( &shared_data->baton_semaphores[team_id] ); // My partner gave me the beaton! Traverse the stage 2. It takes time usleep( 1000 * shared_data->stage_time_2 ); // I arrived to the finish line! grab my position pthread_mutex_lock( &shared_data->finish_mutex ); ++shared_data->position; // Only first runners win the race // if ( shared_data->position <= 3 ) { // Report the place that my team reached printf( "Place %zu: team %zu\n", shared_data->position, team_id + 1 ); } // Leave the finish to allow other teams to traverse it pthread_mutex_unlock( &shared_data->finish_mutex ); // I finished my race return NULL; }