/* * Copyright 2021 Jeisson Hidalgo-Cespedes - Universidad de Costa Rica * Creates a secondary thread that greets in the standard output */ #include #include #include #include #include #include #include typedef struct shared_thread_data { size_t thread_count; sem_t* can_print; pthread_mutex_t stdout_mutex; } shared_thread_data_t; typedef struct private_thread_data { size_t thread_number; // rank shared_thread_data_t* shared_thread_data; } private_thread_data_t; void* run(void* data); int create_threads(shared_thread_data_t* shared_thread_data); int main(int argc, char* argv[]) { int error = 0; size_t thread_count = sysconf(_SC_NPROCESSORS_ONLN); if (argc >= 2) { thread_count = strtoull(argv[1], NULL, 10); } shared_thread_data_t* shared_thread_data = (shared_thread_data_t*) calloc(1, sizeof(shared_thread_data_t)); if (shared_thread_data) { shared_thread_data->thread_count = thread_count; shared_thread_data->can_print = (sem_t*)calloc(thread_count, sizeof(sem_t)); if (shared_thread_data->can_print) { error = pthread_mutex_init(&shared_thread_data->stdout_mutex , /*attr*/NULL); if (error == 0) { struct timespec start_time, finish_time; clock_gettime(/*clk_id*/CLOCK_MONOTONIC, &start_time); error = create_threads(shared_thread_data); clock_gettime(/*clk_id*/CLOCK_MONOTONIC, &finish_time); double elapsed_time = finish_time.tv_sec - start_time.tv_sec + (finish_time.tv_nsec - start_time.tv_nsec) * 1e-9; printf("execution time: %.9lfs\n", elapsed_time); pthread_mutex_destroy(&shared_thread_data->stdout_mutex); } else { fprintf(stderr, "error: could not init mutex\n"); error = 11; } free(shared_thread_data->can_print); } else { fprintf(stderr, "error: could not allocated shared memory\n"); error = 13; } free(shared_thread_data); } else { fprintf(stderr, "error: could not allocated shared memory\n"); error = 12; } return error; } int create_threads(shared_thread_data_t* shared_thread_data) { int error = 0; pthread_t* threads = (pthread_t*) malloc(shared_thread_data->thread_count * sizeof(pthread_t)); private_thread_data_t* private_thread_data = (private_thread_data_t*) calloc(shared_thread_data->thread_count, sizeof(private_thread_data_t)); if (threads && private_thread_data) { for (size_t index = 0; index < shared_thread_data->thread_count; ++index) { /*error =*/sem_init(&shared_thread_data->can_print[index], /*pshared*/0 , /*value*/ !index); private_thread_data[index].thread_number = index; private_thread_data[index].shared_thread_data = shared_thread_data; error = pthread_create(&threads[index], NULL, run , &private_thread_data[index]); if (error) { fprintf(stderr, "error: could not create thread %zu\n", index); error = 21; } } // pthread_mutex_lock(&shared_thread_data->stdout_mutex); // printf("Hello from main thread\n"); // pthread_mutex_unlock(&shared_thread_data->stdout_mutex); for (size_t index = 0; index < shared_thread_data->thread_count; ++index) { pthread_join(threads[index], NULL); sem_destroy(&shared_thread_data->can_print[index]); } free(private_thread_data); free(threads); } else { fprintf(stderr, "error: could not allocate memory for %zu threads\n" , shared_thread_data->thread_count); error = 22; } return error; } void* run(void* data) { private_thread_data_t* private_data = (private_thread_data_t*)data; shared_thread_data_t *shared_data = private_data->shared_thread_data; sem_wait(&shared_data->can_print[private_data->thread_number]); // Do the ordered-task here // pthread_mutex_lock(&private_data->shared_thread_data->stdout_mutex); printf("Hello from secondary thread %zu of %zu\n" , (*private_data).thread_number, shared_data->thread_count); // pthread_mutex_unlock(&shared_data->stdout_mutex); // Allow subsequent thread to do the task sem_post(&shared_data->can_print[(private_data->thread_number + 1) % shared_data->thread_count]); return NULL; }