/* * Copyright 2021 Jeisson Hidalgo-Cespedes - Universidad de Costa Rica * Creates a secondary thread that greets in the standard output */ #include #include #include #include #include #include #include #include typedef struct shared_thread_data { size_t team_count; useconds_t stage1_duration; useconds_t stage2_duration; pthread_barrier_t start_barrier; sem_t* batons; pthread_mutex_t position_mutex; size_t position; pthread_mutex_t stdout_mutex; } shared_thread_data_t; typedef struct private_thread_data { size_t thread_number; // rank shared_thread_data_t* shared_thread_data; } private_thread_data_t; int create_threads(shared_thread_data_t* shared_thread_data); int analyze_arguments(int argc, char* argv[] , shared_thread_data_t* shared_data); void* start_race(void* data); void* finish_race(void* data); int main(int argc, char* argv[]) { int error = 0; shared_thread_data_t* shared_thread_data = (shared_thread_data_t*) calloc(1, sizeof(shared_thread_data_t)); if (shared_thread_data) { error = analyze_arguments(argc, argv, shared_thread_data); if (error == 0 ) { shared_thread_data->position = 0; error += pthread_barrier_init(&shared_thread_data->start_barrier , /*attr*/ NULL, /*count*/ shared_thread_data->team_count); error += pthread_mutex_init(&shared_thread_data->position_mutex, NULL); error += pthread_mutex_init(&shared_thread_data->stdout_mutex, NULL); shared_thread_data->batons = calloc(shared_thread_data->team_count, sizeof(sem_t)); if (error == 0 && shared_thread_data->batons) { for (size_t index = 0; index < shared_thread_data->team_count; ++index) { sem_init(&shared_thread_data->batons[index], 0, 0); } struct timespec start_time, finish_time; clock_gettime(/*clk_id*/CLOCK_MONOTONIC, &start_time); error = create_threads(shared_thread_data); clock_gettime(/*clk_id*/CLOCK_MONOTONIC, &finish_time); double elapsed_time = finish_time.tv_sec - start_time.tv_sec + (finish_time.tv_nsec - start_time.tv_nsec) * 1e-9; printf("execution time: %.9lfs\n", elapsed_time); for (size_t index = 0; index < shared_thread_data->team_count; ++index) { sem_destroy(&shared_thread_data->batons[index]); } free(shared_thread_data->batons); pthread_barrier_destroy(&shared_thread_data->start_barrier); pthread_mutex_destroy(&shared_thread_data->position_mutex); pthread_mutex_destroy(&shared_thread_data->stdout_mutex); } else { fprintf(stderr, "error: could not init mutex\n"); error = 11; } } free(shared_thread_data); } else { fprintf(stderr, "error: could not allocated shared memory\n"); error = 12; } return error; } int analyze_arguments(int argc, char* argv[] , shared_thread_data_t* shared_data) { if (argc != 4) { fprintf(stderr , "usage: relay_race teams stage1_duration stage2_duration\n"); return 1; } if ( sscanf(argv[1], "%zu", &shared_data->team_count) != 1 || shared_data->team_count == 0 ) { return (void)fprintf(stderr, "invalid team count: %s\n", argv[1]), 1; } if ( sscanf(argv[2], "%u", &shared_data->stage1_duration) != 1 ) { return (void)fprintf(stderr, "invalid stage 1 duration: %s\n", argv[2]), 2; } if ( sscanf(argv[3], "%u", &shared_data->stage2_duration) != 1 ) { return (void)fprintf(stderr, "invalid stage 2 duration: %s\n", argv[3]), 3; } return EXIT_SUCCESS; } int create_threads(shared_thread_data_t* shared_thread_data) { int error = 0; const size_t thread_count = 2 * shared_thread_data->team_count; pthread_t* threads = (pthread_t*) malloc(thread_count * sizeof(pthread_t)); private_thread_data_t* private_thread_data = (private_thread_data_t*) calloc(thread_count, sizeof(private_thread_data_t)); if (threads && private_thread_data) { for (size_t index = 0; index < shared_thread_data->team_count; ++index) { private_thread_data[index].thread_number = index; private_thread_data[index].shared_thread_data = shared_thread_data; error = pthread_create(&threads[index], NULL, start_race , &private_thread_data[index]); if (error) { fprintf(stderr, "error: could not create thread %zu\n", index); error = 21; } } for (size_t index = shared_thread_data->team_count; index < thread_count; ++index) { private_thread_data[index].thread_number = index; private_thread_data[index].shared_thread_data = shared_thread_data; error = pthread_create(&threads[index], NULL, finish_race , &private_thread_data[index]); if (error) { fprintf(stderr, "error: could not create thread %zu\n", index); error = 21; } } pthread_mutex_lock(&shared_thread_data->stdout_mutex); printf("Hello from main thread\n"); pthread_mutex_unlock(&shared_thread_data->stdout_mutex); for (size_t index = 0; index < thread_count; ++index) { pthread_join(threads[index], NULL); } free(private_thread_data); free(threads); } else { fprintf(stderr, "error: could not allocate memory for %zu threads\n" , shared_thread_data->team_count); error = 22; } return error; } void* start_race(void* data) { private_thread_data_t* private_data = (private_thread_data_t*)data; shared_thread_data_t* shared_data = private_data->shared_thread_data; pthread_barrier_wait(&shared_data->start_barrier); usleep(1000 * shared_data->stage1_duration); sem_post(&shared_data->batons[private_data->thread_number]); return NULL; } void* finish_race(void* data) { private_thread_data_t* private_data = (private_thread_data_t*)data; shared_thread_data_t* shared_data = private_data->shared_thread_data; const size_t team_number = private_data->thread_number - shared_data->team_count; assert(team_number < shared_data->team_count); sem_wait(&shared_data->batons[team_number]); usleep(1000 * shared_data->stage2_duration); pthread_mutex_lock(&private_data->shared_thread_data->position_mutex); // shared_data->final_place[team_number] = ++shared_data->position; const size_t our_position = ++shared_data->position; pthread_mutex_unlock(&private_data->shared_thread_data->position_mutex); pthread_mutex_lock(&private_data->shared_thread_data->stdout_mutex); printf("Place %zu: team %zu\n", our_position, team_number); pthread_mutex_unlock(&shared_data->stdout_mutex); return NULL; }