Download c source code

/*
 * Copyright 2021 Jeisson Hidalgo-Cespedes - Universidad de Costa Rica
 * Creates a secondary thread that greets in the standard output
 */

#include <assert.h>
#include <inttypes.h>
#include <pthread.h>
#include <semaphore.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

typedef struct shared_thread_data {
  size_t buffer_size;
  double* buffer;
  size_t rounds;
  useconds_t min_producer_delay;
  useconds_t max_producer_delay;
  useconds_t min_consumer_delay;
  useconds_t max_consumer_delay;
  sem_t can_produce;
  sem_t can_consume;
  pthread_mutex_t stdout_mutex;
} shared_thread_data_t;

int analyze_arguments(int argc, char* argv[]
  , shared_thread_data_t* shared_thread_data);
int simulate_producer_consumer(shared_thread_data_t* shared_thread_data);
int create_threads(shared_thread_data_t* shared_thread_data);
void* produce(void* data);
void* consume(void* data);

/**
 * @param min must be less than @a max
 * @param max must be greater than @a min
 */
void random_delay(useconds_t min, useconds_t max);

int main(int argc, char* argv[]) {
  int error = 0;

  struct timespec time;
  clock_gettime(/*clk_id*/CLOCK_MONOTONIC, &time);
  srand(time.tv_nsec);

  shared_thread_data_t* shared_thread_data = (shared_thread_data_t*)
    calloc(1, sizeof(shared_thread_data_t));

  error = analyze_arguments(argc, argv, shared_thread_data);
  if (error == EXIT_SUCCESS) {
    error = simulate_producer_consumer(shared_thread_data);
  }

  return error;
}

int analyze_arguments(int argc, char* argv[]
    , shared_thread_data_t* shared_thread_data) {
  int error = 0;
  if (argc == 7) {
    if (sscanf(argv[1], "%zu", &shared_thread_data->buffer_size) != 1
      || shared_thread_data->buffer_size == 0) {
        fprintf(stderr, "error: invalid buffer size\n");
        error = 2;
    } else if (sscanf(argv[2], "%zu", &shared_thread_data->rounds) != 1
      || shared_thread_data->rounds == 0) {
        fprintf(stderr, "error: invalid round count\n");
        error = 3;
    } else if (sscanf(argv[3], "%u"
      , &shared_thread_data->min_producer_delay) != 1) {
        fprintf(stderr, "error: invalid min producer delay\n");
        error = 4;
    } else if (sscanf(argv[4], "%u"
      , &shared_thread_data->max_producer_delay) != 1) {
        fprintf(stderr, "error: invalid max producer delay\n");
        error = 5;
    } else if (sscanf(argv[5], "%u"
      , &shared_thread_data->min_consumer_delay) != 1) {
        fprintf(stderr, "error: invalid min consumer delay\n");
        error = 6;
    } else if (sscanf(argv[6], "%u"
      , &shared_thread_data->max_consumer_delay) != 1) {
        fprintf(stderr, "error: invalid max consumer delay\n");
        error = 7;
    }
  } else {
    fprintf(stderr, "usage: producer_consumer buffer_size rounds"
      " min_producer_delay max_producer_delay"
      " min_consumer_delay max_consumer_delay\n");
      error = 1;
  }
  return error;
}

int simulate_producer_consumer(shared_thread_data_t* shared_thread_data) {
  assert(shared_thread_data);
  int error = 0;
  if (shared_thread_data) {
    shared_thread_data->buffer = (double*)
      calloc(shared_thread_data->buffer_size, sizeof(double));

    if (shared_thread_data->buffer) {
      error = sem_init(&shared_thread_data->can_produce, /*pshared*/0
        , shared_thread_data->buffer_size);
      error += sem_init(&shared_thread_data->can_consume, /*pshared*/0, 0);
      error += pthread_mutex_init(&shared_thread_data->stdout_mutex
        , /*attr*/NULL);

      if (error == 0) {
        struct timespec start_time, finish_time;
        clock_gettime(/*clk_id*/CLOCK_MONOTONIC, &start_time);

        error = create_threads(shared_thread_data);

        clock_gettime(/*clk_id*/CLOCK_MONOTONIC, &finish_time);
        double elapsed_time = finish_time.tv_sec - start_time.tv_sec +
          (finish_time.tv_nsec - start_time.tv_nsec) * 1e-9;
        printf("execution time: %.9lfs\n", elapsed_time);

        pthread_mutex_destroy(&shared_thread_data->stdout_mutex);
      } else {
        fprintf(stderr, "error: could not init mutex\n");
        error = 11;
      }
    } else {
      fprintf(stderr, "error: could not allocated shared memory\n");
      error = 13;
    }

    free(shared_thread_data->buffer);
    free(shared_thread_data);
  } else {
    fprintf(stderr, "error: could not allocated shared memory\n");
    error = 12;
  }

  return error;
}

int create_threads(shared_thread_data_t* shared_thread_data) {
  assert(shared_thread_data);
  int error = 0;
  pthread_t producer_thread;
  pthread_t consumer_thread;

  error = pthread_create(&producer_thread, NULL, produce, shared_thread_data);
  if (error == 0) {
    error = pthread_create(&consumer_thread, NULL, consume, shared_thread_data);
    if (error == 0) {
      pthread_join(consumer_thread, NULL);
    } else {
      fprintf(stderr, "error: could not create consumer thread\n");
      error = 22;
    }
    pthread_join(producer_thread, NULL);
  } else {
    fprintf(stderr, "error: could not create producer thread\n");
    error = 21;
  }

  return error;
}

void* produce(void* data) {
  assert(data);
  shared_thread_data_t* shared_data = (shared_thread_data_t*)data;

  for (size_t round = 1; round <= shared_data->rounds; ++round) {
    for (size_t index = 0; index < shared_data->buffer_size; ++index) {
      sem_wait(&shared_data->can_produce);
      random_delay(shared_data->min_producer_delay
        , shared_data->max_producer_delay);
      shared_data->buffer[index] = round + (index + 1) / 100.0;

      pthread_mutex_lock(&shared_data->stdout_mutex);
      printf("Produced %.2lf\n", shared_data->buffer[index]);
      pthread_mutex_unlock(&shared_data->stdout_mutex);

      sem_post(&shared_data->can_consume);
    }
  }

  return NULL;
}

void* consume(void* data) {
  assert(data);
  shared_thread_data_t* shared_data = (shared_thread_data_t*)data;

  for (size_t round = 1; round <= shared_data->rounds; ++round) {
    for (size_t index = 0; index < shared_data->buffer_size; ++index) {
      sem_wait(&shared_data->can_consume);
      random_delay(shared_data->min_consumer_delay
        , shared_data->max_consumer_delay);
      double value = shared_data->buffer[index];

      pthread_mutex_lock(&shared_data->stdout_mutex);
      printf("\t\tConsumed %.2lf\n", value);
      pthread_mutex_unlock(&shared_data->stdout_mutex);
      sem_post(&shared_data->can_produce);
    }
  }

  return NULL;
}

void random_delay(useconds_t min, useconds_t max) {
  assert(min <= max);
  useconds_t milliseconds = min;
  if (max > min) {
    milliseconds += rand() % (max - min);
  }
  usleep(milliseconds * 1000);
}