Download c source code

/*
 * Copyright 2021 Jeisson Hidalgo-Cespedes - Universidad de Costa Rica
 * Creates a secondary thread that greets in the standard output
 */

#include <assert.h>
#include <inttypes.h>
#include <pthread.h>
#include <semaphore.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

typedef struct queue_node {
  size_t product_number;
  struct queue_node* next;
} queue_node_t;

/**
 * Thread-safe queue
 */
typedef struct queue {
  queue_node_t* head;
  queue_node_t* tail;
  pthread_mutex_t mutex;
} queue_t;

int queue_init(queue_t* queue);
int queue_destroy(queue_t* queue);
bool queue_is_empty(queue_t* queue);
int queue_append(queue_t* queue, size_t data);
/**
 * @remarks Queue must be not empty, otherwise it will crash
 */
size_t queue_dequeue(queue_t* queue);
int queue_free(queue_t* queue);

typedef struct shared_data {
  size_t product_count;
  size_t next_product_index;
  pthread_mutex_t next_product_mutex;
  queue_t queue;
  size_t producer_count;
  size_t consumer_count;
  useconds_t min_producer_delay;
  useconds_t max_producer_delay;
  useconds_t min_consumer_delay;
  useconds_t max_consumer_delay;
  sem_t can_consume;
  pthread_mutex_t stdout_mutex;
} shared_thread_data_t;

typedef struct private_thread_data {
  size_t thread_number;  // rank
  shared_thread_data_t* shared_data;
} private_thread_data_t;

int analyze_arguments(int argc, char* argv[]
  , shared_thread_data_t* shared_data);
int simulate_producer_consumer(shared_thread_data_t* shared_data);
int create_threads(shared_thread_data_t* shared_data);
void* produce(void* data);
void* consume(void* data);

/**
 * @param min must be less than @a max
 * @param max must be greater than @a min
 */
void random_delay(useconds_t min, useconds_t max, unsigned* seedp);

int main(int argc, char* argv[]) {
  int error = 0;

  shared_thread_data_t* shared_data = (shared_thread_data_t*)
    calloc(1, sizeof(shared_thread_data_t));

  error = analyze_arguments(argc, argv, shared_data);
  if (error == EXIT_SUCCESS) {
    error = simulate_producer_consumer(shared_data);
  }

  return error;
}

int analyze_arguments(int argc, char* argv[]
    , shared_thread_data_t* shared_data) {
  int error = 0;
  if (argc == 8) {
    if (sscanf(argv[1], "%zu", &shared_data->product_count) != 1
      || shared_data->product_count == 0) {
        fprintf(stderr, "error: invalid product count\n");
        error = 2;
    } else if (sscanf(argv[2], "%zu", &shared_data->producer_count) != 1
      || shared_data->producer_count == 0) {
        fprintf(stderr, "error: invalid producer count\n");
        error = 3;
    } else if (sscanf(argv[3], "%zu", &shared_data->consumer_count) != 1
      || shared_data->consumer_count == 0) {
        fprintf(stderr, "error: invalid consumer count\n");
        error = 4;
    } else if (sscanf(argv[4], "%u"
      , &shared_data->min_producer_delay) != 1) {
        fprintf(stderr, "error: invalid min producer delay\n");
        error = 5;
    } else if (sscanf(argv[5], "%u"
      , &shared_data->max_producer_delay) != 1) {
        fprintf(stderr, "error: invalid max producer delay\n");
        error = 6;
    } else if (sscanf(argv[6], "%u"
      , &shared_data->min_consumer_delay) != 1) {
        fprintf(stderr, "error: invalid min consumer delay\n");
        error = 7;
    } else if (sscanf(argv[7], "%u"
      , &shared_data->max_consumer_delay) != 1) {
        fprintf(stderr, "error: invalid max consumer delay\n");
        error = 8;
    }
  } else {
    fprintf(stderr, "usage: producer_consumer product_count producers consumers"
      " min_producer_delay max_producer_delay"
      " min_consumer_delay max_consumer_delay\n");
      error = 1;
  }
  return error;
}

int simulate_producer_consumer(shared_thread_data_t* shared_data) {
  assert(shared_data);
  int error = 0;
  if (shared_data) {
    error += queue_init(&shared_data->queue);
    error += sem_init(&shared_data->can_consume, /*pshared*/0, 0);
    error += pthread_mutex_init(&shared_data->stdout_mutex, /*attr*/NULL);
    error += pthread_mutex_init(&shared_data->next_product_mutex
      , /*attr*/NULL);

    if (error == 0) {
      struct timespec start_time, finish_time;
      clock_gettime(/*clk_id*/CLOCK_MONOTONIC, &start_time);

      error = create_threads(shared_data);

      clock_gettime(/*clk_id*/CLOCK_MONOTONIC, &finish_time);
      double elapsed_time = finish_time.tv_sec - start_time.tv_sec +
        (finish_time.tv_nsec - start_time.tv_nsec) * 1e-9;
      printf("execution time: %.9lfs\n", elapsed_time);

      pthread_mutex_destroy(&shared_data->next_product_mutex);
      pthread_mutex_destroy(&shared_data->stdout_mutex);
    } else {
      fprintf(stderr, "error: could not init mutex\n");
      error = 11;
    }

    queue_free(&shared_data->queue);
    queue_destroy(&shared_data->queue);
    free(shared_data);
  } else {
    fprintf(stderr, "error: could not allocated shared memory\n");
    error = 12;
  }

  return error;
}

int create_threads(shared_thread_data_t* shared_data) {
  assert(shared_data);
  int error = 0;

  const size_t thread_count = shared_data->producer_count
    + shared_data->consumer_count;

  pthread_t* threads = (pthread_t*) malloc(thread_count * sizeof(pthread_t));

  private_thread_data_t* private_data = (private_thread_data_t*)
    calloc(thread_count, sizeof(private_thread_data_t));

  if (threads && private_data) {
    for (size_t index = 0; index < shared_data->producer_count; ++index) {
      private_data[index].thread_number = index;
      private_data[index].shared_data = shared_data;

      error = pthread_create(&threads[index], NULL, produce
        , &private_data[index]);

      if (error) {
        fprintf(stderr, "error: could not create thread %zu\n", index);
        error = 21;
        break;
      }
    }

    for (size_t index = 0; index < shared_data->consumer_count; ++index) {
      const size_t array_index = shared_data->producer_count + index;
      private_data[array_index].thread_number = index;
      private_data[array_index].shared_data = shared_data;

      error = pthread_create(&threads[array_index], NULL, consume
        , &private_data[array_index]);

      if (error) {
        fprintf(stderr, "error: could not create thread %zu\n", array_index);
        error = 21;
        break;
      }
    }

    for (size_t index = 0; index < thread_count; ++index) {
      pthread_join(threads[index], NULL);
    }

    free(private_data);
    free(threads);
  } else {
    fprintf(stderr, "error: could not allocate memory for %zu threads\n"
      , thread_count);
    error = 22;
  }

  return error;
}

void* produce(void* data) {
  assert(data);
  private_thread_data_t* private_data = (private_thread_data_t*)data;
  shared_thread_data_t *shared_data = private_data->shared_data;

  struct timespec time;
  clock_gettime(/*clk_id*/CLOCK_MONOTONIC, &time);
  unsigned int seed = time.tv_nsec;

  while (true) {
    pthread_mutex_lock(&shared_data->next_product_mutex);
    const size_t product_index = shared_data->next_product_index++;
    pthread_mutex_unlock(&shared_data->next_product_mutex);

    if (product_index >= shared_data->product_count) {
      // Give all consumers an opportunity to leave the semaphor
      if (product_index >= shared_data->product_count
        + shared_data->producer_count - 1) {
        printf("All producers finished\n");
        for (size_t index = 0; index < shared_data->consumer_count; ++index) {
          sem_post(&shared_data->can_consume);
        }
      }
      break;
    }

    random_delay(shared_data->min_producer_delay
      , shared_data->max_producer_delay, &seed);

    pthread_mutex_lock(&shared_data->stdout_mutex);
    printf("%zu produced %zu\n", private_data->thread_number
      , product_index + 1);
    pthread_mutex_unlock(&shared_data->stdout_mutex);

    queue_append(&shared_data->queue, product_index);
    sem_post(&shared_data->can_consume);
  }

  return NULL;
}

void* consume(void* data) {
  assert(data);

  private_thread_data_t* private_data = (private_thread_data_t*)data;
  shared_thread_data_t *shared_data = private_data->shared_data;

  struct timespec time;
  clock_gettime(/*clk_id*/CLOCK_MONOTONIC, &time);
  unsigned int seed = time.tv_nsec;

  while (true) {
    sem_wait(&shared_data->can_consume);

    if (queue_is_empty(&shared_data->queue)) {
      break;
    }

    size_t product_index = queue_dequeue(&shared_data->queue);

    pthread_mutex_lock(&shared_data->stdout_mutex);
    printf("\t\t%zu consuming %zu\n", private_data->thread_number
      , product_index + 1);
    pthread_mutex_unlock(&shared_data->stdout_mutex);

    random_delay(shared_data->min_consumer_delay
      , shared_data->max_consumer_delay, &seed);

    // pthread_mutex_lock(&shared_data->stdout_mutex);
    // printf("\t\t%zu consumed %zu\n", private_data->thread_number
      // , product_index + 1);
    // pthread_mutex_unlock(&shared_data->stdout_mutex);
  }

  return NULL;
}

void random_delay(useconds_t min, useconds_t max, unsigned* seedp) {
  assert(min <= max);
  useconds_t milliseconds = min;
  if (max > min) {
    milliseconds += rand_r(seedp) % (max - min);
  }
  usleep(milliseconds * 1000);
}

// ------------ queue.c

bool queue_is_empty_private(const queue_t* queue);

int queue_init(queue_t* queue) {
  assert(queue);
  return pthread_mutex_init(&queue->mutex, /*attr*/NULL);
}

int queue_destroy(queue_t* queue) {
  assert(queue);
  return pthread_mutex_destroy(&queue->mutex);
}

bool queue_is_empty_private(const queue_t* queue) {
  assert(queue);
  return queue->head == NULL;
}

int queue_append(queue_t* queue, size_t data) {
  assert(queue);
  int error = 0;

  queue_node_t* new_node = (queue_node_t*)calloc(1, sizeof(queue_node_t));
  if (new_node) {
    new_node->product_number = data;

    pthread_mutex_lock(&queue->mutex);
    if (queue_is_empty_private(queue)) {
      queue->head = queue->tail = new_node;
    } else {
      queue->tail = queue->tail->next = new_node;
    }
    pthread_mutex_unlock(&queue->mutex);
  } else {
    fprintf(stderr, "error: could not allocate memory for a queue node\n");
    error = 41;
  }

  return error;
}

bool queue_is_empty(queue_t* queue) {
  assert(queue);

  pthread_mutex_lock(&queue->mutex);
  bool result = queue->head == NULL;
  pthread_mutex_unlock(&queue->mutex);

  return result;
}

int queue_free(queue_t* queue) {
  assert(queue);
  return 0;
}

size_t queue_dequeue(queue_t* queue) {
  assert(queue);

  pthread_mutex_lock(&queue->mutex);
  assert(queue_is_empty_private(queue) == false);

  queue_node_t* first = queue->head;
  size_t data = first->product_number;
  queue->head = first->next;
  free(first);
  if (queue->head == NULL) {
    queue->tail = NULL;
  }
  pthread_mutex_unlock(&queue->mutex);

  return data;
}

#if 0

static unsigned xn = 0;

unsigned my_rand(void) {
  unsigned xn_1 = (1103515245 * xn + 12345) % 100;
  return xn = xn_1;
}

void my_srand(unsigned seed_x0) {
  xn = seed_x0;
}

unsigned my_rand_r(unsigned* xn) {
  unsigned xn_1 = (1103515245 * *xn + 12345) % 100;
  return *xn = xn_1;
}

int main2(void) {
  my_srand(time(NULL));
  for (int index = 0; index < 20; ++index) {
    printf("%d: %u\n", index, my_rand());
  }
}

int run0(void) {
  unsigned xn1 = time(NULL);
  unsigned xn2 = time(NULL);
  printf("%d: %u\n", index, my_rand_r(&xn1));
  printf("%d: %u\n", index, my_rand_r(&xn2));
}

int run1(void) {
  unsigned xn = time(NULL);
  for (int index = 0; index < 20; ++index) {
    printf("%d: %u\n", index, my_rand_r(&xn));
  }
}

#endif