// Copyright 2021 Jeisson Hidalgo-Cespedes CC-BY-4 // Simulates a race, each thread reports its position when reaches the finish #include #include #include #include #include #include typedef struct { size_t thread_count; size_t position; pthread_mutex_t can_access_position; } shared_data_t; typedef struct { size_t thread_number; shared_data_t* shared_data; } private_data_t; int create_threads(shared_data_t* shared_data); void* run(void* data); int main(int argc, char* argv[]) { int error = EXIT_SUCCESS; shared_data_t* shared_data = (shared_data_t*) calloc(1, sizeof(shared_data_t)); if (shared_data) { shared_data->position = 0; shared_data->thread_count = sysconf(_SC_NPROCESSORS_ONLN); error = pthread_mutex_init(&shared_data->can_access_position, /*attr*/ NULL); if (error == EXIT_SUCCESS) { if (argc == 2) { if (sscanf(argv[1], "%zu", &shared_data->thread_count) != 1 || errno) { fprintf(stderr, "error: invalid thread count\n"); error = 1; } } if (error == EXIT_SUCCESS) { struct timespec start_time; clock_gettime(/*clk_id*/CLOCK_MONOTONIC, &start_time); error = create_threads(shared_data); struct timespec finish_time; clock_gettime(/*clk_id*/CLOCK_MONOTONIC, &finish_time); double elapsed = (finish_time.tv_sec - start_time.tv_sec) + (finish_time.tv_nsec - start_time.tv_nsec) * 1e-9; printf("execution time: %.9lfs\n", elapsed); pthread_mutex_destroy(&shared_data->can_access_position); } } else { fprintf(stderr, "error: could not init mutex\n"); } free(shared_data); } return error; } int create_threads(shared_data_t* shared_data) { assert(shared_data); int error = EXIT_SUCCESS; pthread_t* threads = (pthread_t*) calloc(shared_data->thread_count , sizeof(pthread_t)); private_data_t* private_data = (private_data_t*) calloc(shared_data->thread_count, sizeof(private_data_t)); if (threads && private_data) { for (size_t index = 0; index < shared_data->thread_count; ++index) { private_data[index].thread_number = index; private_data[index].shared_data = shared_data; if (pthread_create(&threads[index], /*attr*/ NULL, run , &private_data[index]) == EXIT_SUCCESS) { } else { fprintf(stderr, "error: could not create thread %zu\n", index); error = 21; break; } } printf("Hello from main thread\n"); for (size_t index = 0; index < shared_data->thread_count; ++index) { pthread_join(threads[index], /*value_ptr*/ NULL); } free(threads); free(private_data); } else { fprintf(stderr, "error: could not allocate memory for %zu threads\n" , shared_data->thread_count); error = 22; } return error; } void* run(void* data) { const private_data_t* private_data = (private_data_t*)data; shared_data_t* shared_data = private_data->shared_data; const size_t my_thread_id = private_data->thread_number; const size_t thread_count = shared_data->thread_count; pthread_mutex_lock(&shared_data->can_access_position); size_t my_position = ++shared_data->position; printf("Thread %zu/%zu: I arrived at position %zu\n", my_thread_id , thread_count, my_position); pthread_mutex_unlock(&shared_data->can_access_position); return NULL; }