// Copyright 2021 Jeisson Hidalgo-Cespedes <jeisson.hidalgo@ucr.ac.cr> CC-BY-4
// All threads greet in their rank order by using an array of semaphores
// After greeting a thread turns on the next thread's semaphore
#include <assert.h>
#include <errno.h>
#include <pthread.h>
#include <semaphore.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#define GREET_LEN 50
typedef struct {
size_t thread_count;
size_t position;
char** greets;
} shared_data_t;
typedef struct {
size_t thread_number;
shared_data_t* shared_data;
} private_data_t;
int measure_greet(shared_data_t* shared_data);
int create_threads(shared_data_t* shared_data);
void* run(void* data);
void** create_matrix(size_t row_count, size_t col_count, size_t element_size);
void free_matrix(const size_t row_count, void** matrix);
int main(int argc, char* argv[]) {
int error = EXIT_SUCCESS;
shared_data_t* shared_data = (shared_data_t*)
calloc(1, sizeof(shared_data_t));
if (shared_data) {
shared_data->position = 0;
shared_data->thread_count = sysconf(_SC_NPROCESSORS_ONLN);
if (argc == 2) {
if (sscanf(argv[1], "%zu", &shared_data->thread_count) != 1 || errno) {
fprintf(stderr, "error: invalid thread count\n");
error = 1;
}
}
if (error == EXIT_SUCCESS) {
shared_data->greets = (char**) create_matrix(shared_data->thread_count
, GREET_LEN, sizeof(char));
if (shared_data->greets) {
error = measure_greet(shared_data);
free_matrix(shared_data->thread_count, (void**)shared_data->greets);
} else {
fprintf(stderr, "error: could not allocate semaphores\n");
error = 3;
}
free(shared_data);
} else {
fprintf(stderr, "error: could not allocate shared memory\n");
error = 2;
}
}
return error;
}
int measure_greet(shared_data_t* shared_data) {
struct timespec start_time;
clock_gettime(/*clk_id*/CLOCK_MONOTONIC, &start_time);
int error = create_threads(shared_data);
struct timespec finish_time;
clock_gettime(/*clk_id*/CLOCK_MONOTONIC, &finish_time);
for (size_t index = 0; index < shared_data->thread_count; ++index) {
printf("%s\n", shared_data->greets[index]);
}
double elapsed = (finish_time.tv_sec - start_time.tv_sec) +
(finish_time.tv_nsec - start_time.tv_nsec) * 1e-9;
printf("execution time: %.9lfs\n", elapsed);
return error;
}
int create_threads(shared_data_t* shared_data) {
assert(shared_data);
int error = EXIT_SUCCESS;
pthread_t* threads = (pthread_t*) calloc(shared_data->thread_count
, sizeof(pthread_t));
private_data_t* private_data = (private_data_t*)
calloc(shared_data->thread_count, sizeof(private_data_t));
if (threads && private_data) {
for (size_t index = 0; index < shared_data->thread_count; ++index) {
private_data[index].thread_number = index;
private_data[index].shared_data = shared_data;
if (error == EXIT_SUCCESS) {
if (pthread_create(&threads[index], /*attr*/ NULL, run
, &private_data[index]) == EXIT_SUCCESS) {
} else {
fprintf(stderr, "error: could not create thread %zu\n", index);
error = 21;
shared_data->thread_count = index;
break;
}
} else {
fprintf(stderr, "error: could not init semaphore %zu\n", index);
error = 22;
shared_data->thread_count = index;
break;
}
}
printf("Hello from main thread\n");
for (size_t index = 0; index < shared_data->thread_count; ++index) {
pthread_join(threads[index], /*value_ptr*/ NULL);
}
free(threads);
free(private_data);
} else {
fprintf(stderr, "error: could not allocate memory for %zu threads\n"
, shared_data->thread_count);
error = 22;
}
return error;
}
void* run(void* data) {
const private_data_t* private_data = (private_data_t*)data;
shared_data_t* shared_data = private_data->shared_data;
const size_t my_thread_id = private_data->thread_number;
const size_t thread_count = shared_data->thread_count;
// Do heavy task
sprintf(shared_data->greets[my_thread_id], "Hello from thread %zu of %zu"
, my_thread_id, thread_count);
return NULL;
}
void** create_matrix(size_t row_count, size_t col_count, size_t element_size) {
void** matrix = (void**) calloc(row_count, sizeof(void*));
if ( matrix == NULL ) {
return NULL;
}
for (size_t row = 0; row < row_count; ++row) {
if ( (matrix[row] = calloc(col_count, element_size) ) == NULL ) {
free_matrix(row_count, matrix);
return NULL;
}
}
return matrix;
}
void free_matrix(const size_t row_count, void** matrix) {
if (matrix) {
for (size_t row = 0; row < row_count; ++row) {
free(matrix[row]);
}
}
free(matrix);
}