// Copyright 2021 Jeisson Hidalgo CC-BY 4.0 #define _DEFAULT_SOURCE #include #include #include #include #include #include #include #include typedef struct shared_data { size_t team_count; useconds_t stage1_duration; useconds_t stage2_duration; size_t position; pthread_barrier_t start_barrier; sem_t* batons; pthread_mutex_t finish_mutex; } shared_data_t; typedef struct private_data { size_t thread_number; // rank shared_data_t* shared_data; } private_data_t; int create_threads(shared_data_t* shared_data); int analyze_arguments(int argc, char* argv[], shared_data_t* shared_data); void* start_race(void* data); void* finish_race(void* data); int main(int argc, char* argv[]) { int error = EXIT_SUCCESS; shared_data_t* shared_data = (shared_data_t*) calloc(1, sizeof(shared_data_t)); if (shared_data) { error = analyze_arguments(argc, argv, shared_data); if (error == EXIT_SUCCESS) { shared_data->position = 0; error = pthread_barrier_init(&shared_data->start_barrier, /*attr*/ NULL, /*count*/ shared_data->team_count); shared_data->batons = (sem_t*) calloc(shared_data->team_count , sizeof(sem_t)); error += pthread_mutex_init(&shared_data->finish_mutex, /*attr*/ NULL); if (error == EXIT_SUCCESS && shared_data->batons) { for (size_t index = 0; index < shared_data->team_count; ++index) { sem_init(&shared_data->batons[index], /*pshared*/ 0, /*value*/ 0); } struct timespec start_time, finish_time; clock_gettime(/*clk_id*/CLOCK_MONOTONIC, &start_time); error = create_threads(shared_data); clock_gettime(/*clk_id*/CLOCK_MONOTONIC, &finish_time); double elapsed_time = finish_time.tv_sec - start_time.tv_sec + (finish_time.tv_nsec - start_time.tv_nsec) * 1e-9; printf("execution time: %.9lfs\n", elapsed_time); for (size_t index = 0; index < shared_data->team_count; ++index) { sem_destroy(&shared_data->batons[index]); } pthread_mutex_destroy(&shared_data->finish_mutex); free(shared_data->batons); pthread_barrier_destroy(&shared_data->start_barrier); } else { fprintf(stderr, "error: could not init mutex\n"); error = 11; } } free(shared_data); } else { fprintf(stderr, "error: could not allocated shared memory\n"); error = 12; } return error; } int analyze_arguments(int argc, char* argv[] , shared_data_t* shared_data) { if (argc == 4) { if ( sscanf(argv[1], "%zu", &shared_data->team_count) != 1 || shared_data->team_count == 0 ) { fprintf(stderr, "invalid team count: %s\n", argv[1]); return 11; } if ( sscanf(argv[2], "%u", &shared_data->stage1_duration) != 1 ) { fprintf(stderr, "invalid stage 1 duration: %s\n", argv[2]); return 12; } if ( sscanf(argv[3], "%u", &shared_data->stage2_duration) != 1 ) { fprintf(stderr, "invalid stage 2 duration: %s\n", argv[3]); return 13; } return EXIT_SUCCESS; } else { fprintf(stderr, "usage: relay_race teams stage1duration stage2duration\n"); return 10; } } int create_threads(shared_data_t* shared_data) { int error = EXIT_SUCCESS; const size_t thread_count = 2 * shared_data->team_count; pthread_t* threads = (pthread_t*) malloc(thread_count * sizeof(pthread_t)); private_data_t* private_data = (private_data_t*) calloc(thread_count, sizeof(private_data_t)); if (threads && private_data) { for (size_t index = 0; index < shared_data->team_count; ++index) { private_data[index].thread_number = index; private_data[index].shared_data = shared_data; error = pthread_create(&threads[index], NULL, start_race , &private_data[index]); if (error) { fprintf(stderr, "error: could not create thread %zu\n", index); error = 21; } } for (size_t index = shared_data->team_count; index < thread_count; ++index) { private_data[index].thread_number = index; private_data[index].shared_data = shared_data; error = pthread_create(&threads[index], NULL, finish_race , &private_data[index]); if (error) { fprintf(stderr, "error: could not create thread %zu\n", index); error = 21; } } for (size_t index = 0; index < thread_count; ++index) { pthread_join(threads[index], NULL); } free(private_data); free(threads); } else { fprintf(stderr, "error: could not allocate memory for %zu threads\n" , shared_data->team_count); error = 22; } return error; } void* start_race(void* data) { private_data_t* private_data = (private_data_t*)data; shared_data_t* shared_data = private_data->shared_data; const size_t rank = private_data->thread_number; const size_t team_number = rank; pthread_barrier_wait(&shared_data->start_barrier); usleep(1000 * shared_data->stage1_duration); sem_post(&shared_data->batons[team_number]); return NULL; } void* finish_race(void* data) { private_data_t* private_data = (private_data_t*)data; shared_data_t* shared_data = private_data->shared_data; const size_t rank = private_data->thread_number; const size_t team_number = rank - shared_data->team_count; assert(team_number < shared_data->team_count); // wait(batons[team_number]) sem_wait(&shared_data->batons[team_number]); usleep(1000 * shared_data->stage2_duration); pthread_mutex_lock(&shared_data->finish_mutex); const size_t our_position = ++shared_data->position; // if (our_position <= 3) { printf("Place %zu: team %zu\n", our_position, team_number); // } pthread_mutex_unlock(&shared_data->finish_mutex); return NULL; }