// Copyright 2021 Jeisson Hidalgo CC-BY 4.0 #include #include #include #include #include #include #include #include // thread_shared_data_t typedef struct shared_data { uint64_t position; pthread_mutex_t can_access_position; uint64_t thread_count; } shared_data_t; // thread_private_data_t typedef struct private_data { uint64_t thread_number; // rank shared_data_t* shared_data; } private_data_t; /** * @brief ... */ void* race(void* data); int create_threads(shared_data_t* shared_data); // procedure main(argc, argv[]) int main(int argc, char* argv[]) { int error = EXIT_SUCCESS; // create thread_count as result of converting argv[1] to integer // thread_count := integer(argv[1]) uint64_t thread_count = sysconf(_SC_NPROCESSORS_ONLN); if (argc == 2) { if (sscanf(argv[1], "%" SCNu64, &thread_count) == 1) { } else { fprintf(stderr, "Error: invalid thread count\n"); return 11; } } shared_data_t* shared_data = (shared_data_t*)calloc(1, sizeof(shared_data_t)); if (shared_data) { shared_data->position = 0; error = pthread_mutex_init(&shared_data->can_access_position, /*attr*/NULL); if (error == EXIT_SUCCESS) { shared_data->thread_count = thread_count; struct timespec start_time, finish_time; clock_gettime(CLOCK_MONOTONIC, &start_time); error = create_threads(shared_data); clock_gettime(CLOCK_MONOTONIC, &finish_time); double elapsed_time = finish_time.tv_sec - start_time.tv_sec + (finish_time.tv_nsec - start_time.tv_nsec) * 1e-9; printf("Execution time: %.9lfs\n", elapsed_time); pthread_mutex_destroy(&shared_data->can_access_position); free(shared_data); } else { fprintf(stderr, "Error: could not init mutex\n"); return 13; } } else { fprintf(stderr, "Error: could not allocate shared data\n"); return 12; } return error; } // end procedure int create_threads(shared_data_t* shared_data) { int error = EXIT_SUCCESS; // for thread_number := 0 to thread_count do pthread_t* threads = (pthread_t*) malloc(shared_data->thread_count * sizeof(pthread_t)); private_data_t* private_data = (private_data_t*) calloc(shared_data->thread_count, sizeof(private_data_t)); if (threads && private_data) { for (uint64_t thread_number = 0; thread_number < shared_data->thread_count ; ++thread_number) { private_data[thread_number].thread_number = thread_number; private_data[thread_number].shared_data = shared_data; // create_thread(greet, thread_number) error = pthread_create(&threads[thread_number], /*attr*/ NULL, race , /*arg*/ &private_data[thread_number]); if (error == EXIT_SUCCESS) { } else { fprintf(stderr, "Error: could not create secondary thread\n"); error = 21; break; } } // print "Hello from main thread" printf("Hello from main thread\n"); for (uint64_t thread_number = 0; thread_number < shared_data->thread_count ; ++thread_number) { pthread_join(threads[thread_number], /*value_ptr*/ NULL); } free(private_data); free(threads); } else { fprintf(stderr, "Error: could not allocate %" PRIu64 " threads\n" , shared_data->thread_count); error = 22; } return error; } // procedure greet: void* race(void* data) { assert(data); private_data_t* private_data = (private_data_t*) data; shared_data_t* shared_data = private_data->shared_data; // lock(can_access_position) pthread_mutex_lock(&shared_data->can_access_position); // race condition/data race/condición de carrera: // modificación concurrente de memoria compartida // position := position + 1 ++shared_data->position; // my_position := position uint64_t my_position = shared_data->position; // print "Hello from secondary thread" printf("Thread %" PRIu64 "/%" PRIu64 ": I arrived at position %" PRIu64 "\n" , private_data->thread_number, shared_data->thread_count, my_position); // unlock(can_access_position) pthread_mutex_unlock(&shared_data->can_access_position); return NULL; } // end procedure