Universidad de Costa Rica Examen 03 CI-0112 Programacién I - 2017b
Escuela de Computacion 04-Dic-2017 Profesor Jeisson Hidalgo-Céspedes

Archivo de registros jerarquicos

Para representar datos en una computadora, los programas disponen entre dos extremos: los documentos y las
bases de datos. Las bases de datos ofrecen mucho poder a las computadoras pero imponen una estructura muy
formal que es dificil para las personas modificarlas. Los documentos son muy flexibles para las personas pero
limitan el poder de cdmputo de los programas. Existe una solucién intermedia que son los documentos
estructurados. Las dos notaciones mas populares de documentos estructurados son el lenguaje extendido de
marcado (XML, eXtensible Markup Language) y la notacion de objetos de JavaScript (JSON, JavaScript Object
Notation).

Para manipular un documento XML se necesita analizarlo (parsing) y para manipular un documento JSON se debe
interpretar su codigo fuente (eval). Ambos procesos son demandantes de recursos computacionales y podrian ser
poco convenientes para equipos de bajo rendimiento, tales como dispositivos del internet de las cosas (IoT, Internet
of Things) y dispositivos moviles.

Una vez que se ha analizado un documento XML o interpretado un objeto JSON, el programa podria guardar los
resultados en una representacion que sea eficiente para cargar en dispositivos de bajo rendimiento, o incluso en la
misma computadora si se quiere incrementar su rendimiento. Esta representacion almacenaria el resultado del
proceso de analisis o interpretacion, siempre y cuando el documento original sea valido. En lo siguiente se presenta
una propuesta que cumple estas caracteristicas y a la que llamaremos archivo de registros jerarquicos. Para
ejemplificarlo sea un documento XML con preguntas para un juego de Trivia:

<trivia name="general">
<question type="numeric" answer="1000" difficulty="0.1">
<text>Cudntos metros hay en un kildémetro?</text>
</question>

<question type="single choice" answer="2" difficulty="0.3">
<text>Quién tiene 4 estémagos?</text>
<choices order="random">
<choice>Una gallina</choice>
<choice>Una vaca</choice>
<choice>El Botija</choice>
<choice>Una méaquina tragamonedas</choice>
</choices>
</question>
</trivia>

Un archivo de registros es un archivo de texto donde cada linea representa un registro. El nimero de linea indica el
numero de registro. Un registro es un conjunto ordenado de campos. Los campos se separan por un caracter
separador arbitrario, por ejemplo la barra vertical (|). Los campos son parejas del nombre del campo y su valor. Los
elementos del ejemplo de trivia podrian traducirse a los siguientes registros:

type=trivia|name=general
type=question|type=numeric|answer=1000|difficulty=0.1
type=text |nodevalue=Cuantos metros hay en un kilémetro?
type=question|type=single choice|answer=2|difficulty=0.3
type=text|nodeValue=Quién tiene 4 estémagos?
type=choices |order=random

type=choice|nodeValue=Una gallina
type=choice|nodevValue=Una vaca

type=choice|nodevalue=El Botija
type=choice|nodeValue=Una madquina tragamonedas

Notese que hemos escogido el campo type= para indicar el nombre del elemento, y nodevalue para indicar su
contenido textual, aunque estas decisiones son arbitrarias. Los atributos del elemento se agregaron simplemente
COMoO MAs campos atributo=valor al registro.

Como todos los registros del mismo tipo tienen siempre los mismos campos, es redundante escribir los nombres.
Esta redundancia consume espacio, tanta como el archivo XML original. Si asumimos que ademas los campos
siempre estan en el mismo orden, se pueden eliminar los nombres de los mismos y bastaria con saber el tipo de
registro para recuperar luego las parejas campo=valor:

mailto:jeisson.hidalgo@ucr.ac.cr

trivia|general

question|numeric|1000|0.1

text |Cudntos metros hay en un kilémetro?
question|single choice|2]0.3

text|Quién tiene 4 estémagos?
choices|random

choice|Una gallina

choice|Una vaca

choice|El Botija

choice|Una midquina tragamonedas

El archivo anterior es sdlo una lista de registros, no tiene jerarquia. Para saber a quién pertenece cada registro se
puede agregar un primer campo que indica el nimero de registro padre. El nUmero de registro es su nimero de
linea:

10|trivia|general
1|question|numeric|1000|0.1

2|text|Cudntos metros hay en un kildmetro?
1|question|single choice|2|0.3
4|text|Quién tiene 4 estdémagos?

4 |choices|random

6|choice|Una gallina

6 |choice|Una vaca

6|choice|El Botija

6 |choice|Una maquina tragamonedas

Por ejemplo, la segunda linea tiene un registro de tipo question y el 1 al inicio indica que su registro padre es el que
esta en la linea 1 (trivia). En la tercera linea indica que hay un registro text que es el texto de la pregunta que
esta en la registro 2 y asi sucesivamente.

El registro raiz, que siempre esta en la linea 1, no tiene padre por lo no tiene sentido indicarlo. Sin embargo, se
aprovecha este espacio para indicar un nimero muy util: la cantidad de registros (lineas) en el archivo. Un
invariante, y por tanto una restriccion que siempre se debe cumplir es la siguiente: en un archivo de registros un
registro padre tiene que aparecer antes que todos sus registros hijos. Por tanto, el registro raiz siempre es el
primero del archivo de registros.

Si el archivo anterior se da a un programa, sabra los valores de los campos pero no sus nombres. Para saber los
nombres de los campos se le puede dar un archivo de registros aparte con esos nhombres, a los cual se le
Ilamaremos el archivo de metadatos:

|5|trivia|name
question|type|answer|difficulty
text|text

choices|order

choice|text

Por conveniencia se hace iniciar al archivo de metadatos con el separador de campos, de tal forma que el programa
pueda usarlo para leer el resto del archivo de metadatos y el archivo de registros. Seguido al separador, un nimero
indica la cantidad de tipos de registros en el archivo de metadatos, es decir, la cantidad de lineas de este archivo. Al
igual que el archivo de registros, las lineas del archivo de metadatos indican el nimero de registro. Estos nimeros
pueden reemplazar el nombre del registro en el archivo de registros lo cual ayudaria a los programas a encontrar su
tipo de registro de forma muy eficiente:

10|1|general

1|2 |numeric|1000|0.1

2|3 |cudntos metros hay en un kilémetro?
1|2|single_choice|2]0.3

4|3|Quién tiene 4 estémagos?

4|4 |random

6|5|Una gallina

6|5|Una vaca

6|5|E1 Botija

6|5|Una mdquina tragamonedas

Este ejemplo se lee asi: El archivo contiene 10 registros (lineas). El registro raiz es de tipo 1, es decir, la primera
linea del archivo de metadatos que corresponde al registro trivia|name. Le sigue un campo name, que al empatarlo
con los datos se obtendra name=general. El segundo registro del archivo de registros es hijo del registro 1, por tanto,
es hijo de trivia. Es de tipo 2 que corresponde a question|type|answer|difficulty en el archivo de metadatos. Al
empatar los campos se obtendran las parejas type=numeric, answer=1000 Y difficulty=0.1. Y asi sucesivamente.

El archivo de registros resultante es mas compacto, y mucho mas rapido de cargar por un programa de
computadora que sus correspondientes versiones en XML o JSON, en especial si la cantidad de datos es
considerable. Se le pide que aplique sus conocimientos de programacion para implementar un programa en Java
gue pueda cargar archivos de registros y sus correspondientes metadatos. Su programa debera implementar lo
siguiente.

Una clase Metadata que representa una linea del archivo de metadatos. Simplemente contiene un nombre de
registro y un arreglo de nombres de campos (string). Es conveniente que tenga métodos para acceder al nombre
del registro, a la cantidad de campos, al nombre de un campo por su indice, y un método para cargarse desde un
objeto scanner.

Una clase rRecord que representa un registro jerarquico del archivo de datos. Contiene una referencia a sus
metadatos (Metadata), un arreglo de valores, y un arreglo de registros hijos. Es conveniente que reciba la referencia
a los metadatos en el constructor, y que tenga un método para cargarse desde un objeto Scanner y otro método
para agregar un registro a su arreglo de hijos.

Una clase RecordLoader. La clase tendra dos arreglos, uno de metadatos (Metadata) y otro de datos (Rercord).
Implementara un método para cargar metadatos, que recibe un objeto scanner y retorna un arreglo de metadatos
(puede usar ArrayList, Si gusta). Implementara otro método para cargar datos, que recibe un objeto scanner y
retorna la raiz de un arbol de registros. En ambos métodos de cargado, use la cantidad de lineas proveniente del
archivo para crear el arreglo del tamafio exacto. Implemente métodos de cargado en sus clases Metadata Y Record
que faciliten el cargado en RecordLoader.

Se quiere un programa que en la entrada estandar reciba un archivo de metadatos, un archivo de registros y lo
convierta a tres potenciales formatos: texto puro, XML y JSON. En la primera linea se indica el formato destino
deseado.

Ejemplo de entrada:

text

|5|trivia|name
question|type|answer|difficulty
text|text

choices |order

choice|text

10|1|general

1|2 |numeric|1000|0.1

2|3|Cuéntos metros hay en un kildémetro?
1|2|single_choice|2]0.3

4|3|Quién tiene 4 estémagos?

4|4|random

6|5|Una gallina

6|5|Una vaca

6|5|E1 Botija

6|5|Una maquina tragamonedas

El programa que hace las conversiones esta parcialmente implementado, pero se requiere que implemente tres
funciones recursivas en su clase Record: toText (), toXML() Y toJsoN(). El método toText () permite convertir el
archivo de registros a formato de texto. Retorna un String resultado de concatenar todos los contenidos de texto
(nodevalue) del registro en que se invoca y su descendencia. Recibe por pardmetro un texto separador. Por ejemplo,
si se usa como separador un cambio de linea ("\n") producira la siguiente salida:

Ejemplo de salida de texto:

Cuantos metros hay en un kildmetro?
Quién tiene 4 estdmagos?

Una gallina

Una vaca

El Botija

Una maquina tragamonedas

[Opcional en papel, obligatorio en digital]. El segundo método recursivo de Record €s toxML(). Recibe un
entero que indica el nivel de anidamiento (indentacidn). Retorna un string resultado de convertir ese registro y
registros hijos en texto XML, como se ve abajo. Cada registro se convierte a un elemento XML. Recuerde que un
elemento se compone de tres partes: una etiqueta de apertura (opening tag), un contenido que puede ser texto u
otros elementos (por simplicidad asuma que son excluyentes), y una etiqueta de cierre (closing tag).

Ejemplo de salida XML:

<trivia name="general">
<question type="numeric" answer="1000" difficulty="0.1">
<text>Cuantos metros hay en un kilémetro?</text>
</question>
<question type="single choice" answer="2" difficulty="0.3">
<text>Quién tiene 4 estdmagos?</text>
<choices order="random">
<choice>Una gallina</choice>
<choice>Una vaca</choice>
<choice>El Botija</choice>
<choice>Una méaquina tragamonedas</choice>
</choices>
</question>
</trivia>

[Opcional disponible sdlo en version digital]. El tercer método recursivo de Record es toJson(). Al igual que el
meétodo anterior, produce un string resultado de convertir el registro y sus hijos a formato JSON.

Cddigo fuente dado:

import java.util.Scanner;

/** Reads record files and convert them to plain text, XML or JSON */
public class Solution
{

/** Gets data from standard input */

private Scanner input = null;

Jx*
* Start the execution of the solution
* @param args Command line arguments

*/
public static void main(String args[])
{
Solution solution = new Solution();
solution.run();
}

/** Run the solution. This method is called from main() */
public void run()
{
// Create object to read data from standard input
this.input = new Scanner(System.in);

// Read the target format and ignore the extra new line
String targetFormat = this.input.nextLine();
this.input.nextLine();

// Create the object that will do the conversion
RecordLoader recordLoader = new RecordLoader();

// Read the metadata file and ignore the extra new line
recordLoader.loadMetadata(this.input);
this.input.nextLine();

// Read the data file
Record data = recordLoader.loadData(this.input);

// Print the data according to the target format

switch (targetFormat)

{
case "text": System.out.print(data.toText("\n")); break;
case "xml" : System.out.print(data.toXML(0)); break;
case "json": System.out.print(data.toJSON(0)); break;

}

// Close the standard input
this.input.close();

http://jeisson.ecci.ucr.ac.cr/appweb/material/#js_objects

