
Universidad de Costa Rica
Escuela de Computación

Examen 03
04­Dic­2017

CI­0112 Programación I ­ 2017b
Profesor Jeisson Hidalgo­Céspedes

Archivo de registros jerárquicos

Para representar datos en una computadora, los programas disponen entre dos extremos: los documentos y las
bases de datos. Las bases de datos ofrecen mucho poder a las computadoras pero imponen una estructura muy
formal que es difícil para las personas modificarlas. Los documentos son muy flexibles para las personas pero
limitan el poder de cómputo de los programas. Existe una solución intermedia que son los documentos
estructurados. Las dos notaciones más populares de documentos estructurados son el lenguaje extendido de
marcado (XML, eXtensible Markup Language) y la notación de objetos de JavaScript (JSON, JavaScript Object
Notation).

Para manipular un documento XML se necesita analizarlo (parsing) y para manipular un documento JSON se debe
interpretar su código fuente (eval). Ambos procesos son demandantes de recursos computacionales y podrían ser
poco convenientes para equipos de bajo rendimiento, tales como dispositivos del internet de las cosas (IoT, Internet
of Things) y dispositivos móviles.

Una vez que se ha analizado un documento XML o interpretado un objeto JSON, el programa podría guardar los
resultados en una representación que sea eficiente para cargar en dispositivos de bajo rendimiento, o incluso en la
misma computadora si se quiere incrementar su rendimiento. Esta representación almacenaría el resultado del
proceso de análisis o interpretación, siempre y cuando el documento original sea válido. En lo siguiente se presenta
una propuesta que cumple estas características y a la que llamaremos archivo de registros jerárquicos. Para
ejemplificarlo sea un documento XML con preguntas para un juego de Trivia:

<trivia name="general">
 <question type="numeric" answer="1000" difficulty="0.1">
 <text>Cuántos metros hay en un kilómetro?</text>
 </question>

 <question type="single_choice" answer="2" difficulty="0.3">
 <text>Quién tiene 4 estómagos?</text>
 <choices order="random">
 <choice>Una gallina</choice>
 <choice>Una vaca</choice>
 <choice>El Botija</choice>
 <choice>Una máquina tragamonedas</choice>
 </choices>
 </question>
</trivia>

Un archivo de registros es un archivo de texto donde cada línea representa un registro. El número de línea indica el
número de registro. Un registro es un conjunto ordenado de campos. Los campos se separan por un carácter
separador arbitrario, por ejemplo la barra vertical (|). Los campos son parejas del nombre del campo y su valor. Los
elementos del ejemplo de trivia podrían traducirse a los siguientes registros:

type=trivia|name=general
type=question|type=numeric|answer=1000|difficulty=0.1
type=text|nodeValue=Cuántos metros hay en un kilómetro?
type=question|type=single_choice|answer=2|difficulty=0.3
type=text|nodeValue=Quién tiene 4 estómagos?
type=choices|order=random
type=choice|nodeValue=Una gallina
type=choice|nodeValue=Una vaca
type=choice|nodeValue=El Botija
type=choice|nodeValue=Una máquina tragamonedas

Nótese que hemos escogido el campo type= para indicar el nombre del elemento, y nodeValue para indicar su
contenido textual, aunque estas decisiones son arbitrarias. Los atributos del elemento se agregaron simplemente
como más campos atributo=valor al registro.

Como todos los registros del mismo tipo tienen siempre los mismos campos, es redundante escribir los nombres.
Esta redundancia consume espacio, tanta como el archivo XML original. Si asumimos que además los campos
siempre están en el mismo orden, se pueden eliminar los nombres de los mismos y bastaría con saber el tipo de
registro para recuperar luego las parejas campo=valor:

mailto:jeisson.hidalgo@ucr.ac.cr

trivia|general
question|numeric|1000|0.1
text|Cuántos metros hay en un kilómetro?
question|single_choice|2|0.3
text|Quién tiene 4 estómagos?
choices|random
choice|Una gallina
choice|Una vaca
choice|El Botija
choice|Una máquina tragamonedas

El archivo anterior es sólo una lista de registros, no tiene jerarquía. Para saber a quién pertenece cada registro se
puede agregar un primer campo que indica el número de registro padre. El número de registro es su número de
línea:

10|trivia|general
1|question|numeric|1000|0.1
2|text|Cuántos metros hay en un kilómetro?
1|question|single_choice|2|0.3
4|text|Quién tiene 4 estómagos?
4|choices|random
6|choice|Una gallina
6|choice|Una vaca
6|choice|El Botija
6|choice|Una máquina tragamonedas

Por ejemplo, la segunda línea tiene un registro de tipo question y el 1 al inicio indica que su registro padre es el que
está en la línea 1 (trivia). En la tercera línea indica que hay un registro text que es el texto de la pregunta que
está en la registro 2 y así sucesivamente.

El registro raíz, que siempre está en la línea 1, no tiene padre por lo no tiene sentido indicarlo. Sin embargo, se
aprovecha este espacio para indicar un número muy útil: la cantidad de registros (líneas) en el archivo. Un
invariante, y por tanto una restricción que siempre se debe cumplir es la siguiente: en un archivo de registros un
registro padre tiene que aparecer antes que todos sus registros hijos. Por tanto, el registro raíz siempre es el
primero del archivo de registros.

Si el archivo anterior se da a un programa, sabrá los valores de los campos pero no sus nombres. Para saber los
nombres de los campos se le puede dar un archivo de registros aparte con esos nombres, a los cual se le
llamaremos el archivo de metadatos:

|5|trivia|name
question|type|answer|difficulty
text|text
choices|order
choice|text

Por conveniencia se hace iniciar al archivo de metadatos con el separador de campos, de tal forma que el programa
pueda usarlo para leer el resto del archivo de metadatos y el archivo de registros. Seguido al separador, un número
indica la cantidad de tipos de registros en el archivo de metadatos, es decir, la cantidad de líneas de este archivo. Al
igual que el archivo de registros, las líneas del archivo de metadatos indican el número de registro. Estos números
pueden reemplazar el nombre del registro en el archivo de registros lo cual ayudaría a los programas a encontrar su
tipo de registro de forma muy eficiente:

10|1|general
1|2|numeric|1000|0.1
2|3|Cuántos metros hay en un kilómetro?
1|2|single_choice|2|0.3
4|3|Quién tiene 4 estómagos?
4|4|random
6|5|Una gallina
6|5|Una vaca
6|5|El Botija
6|5|Una máquina tragamonedas

Este ejemplo se lee así: El archivo contiene 10 registros (líneas). El registro raíz es de tipo 1, es decir, la primera
línea del archivo de metadatos que corresponde al registro trivia|name. Le sigue un campo name, que al empatarlo
con los datos se obtendrá name=general. El segundo registro del archivo de registros es hijo del registro 1, por tanto,
es hijo de trivia. Es de tipo 2 que corresponde a question|type|answer|difficulty en el archivo de metadatos. Al
empatar los campos se obtendrán las parejas type=numeric, answer=1000 y difficulty=0.1. Y así sucesivamente.

El archivo de registros resultante es más compacto, y mucho más rápido de cargar por un programa de
computadora que sus correspondientes versiones en XML o JSON, en especial si la cantidad de datos es
considerable. Se le pide que aplique sus conocimientos de programación para implementar un programa en Java
que pueda cargar archivos de registros y sus correspondientes metadatos. Su programa deberá implementar lo
siguiente.

Una clase Metadata que representa una línea del archivo de metadatos. Simplemente contiene un nombre de
registro y un arreglo de nombres de campos (String). Es conveniente que tenga métodos para acceder al nombre
del registro, a la cantidad de campos, al nombre de un campo por su índice, y un método para cargarse desde un
objeto Scanner.

Una clase Record que representa un registro jerárquico del archivo de datos. Contiene una referencia a sus
metadatos (Metadata), un arreglo de valores, y un arreglo de registros hijos. Es conveniente que reciba la referencia
a los metadatos en el constructor, y que tenga un método para cargarse desde un objeto Scanner y otro método
para agregar un registro a su arreglo de hijos.

Una clase RecordLoader. La clase tendrá dos arreglos, uno de metadatos (Metadata) y otro de datos (Rercord).
Implementará un método para cargar metadatos, que recibe un objeto Scanner y retorna un arreglo de metadatos
(puede usar ArrayList, si gusta). Implementará otro método para cargar datos, que recibe un objeto Scanner y
retorna la raíz de un árbol de registros. En ambos métodos de cargado, use la cantidad de líneas proveniente del
archivo para crear el arreglo del tamaño exacto. Implemente métodos de cargado en sus clases Metadata y Record
que faciliten el cargado en RecordLoader.

Se quiere un programa que en la entrada estándar reciba un archivo de metadatos, un archivo de registros y lo
convierta a tres potenciales formatos: texto puro, XML y JSON. En la primera línea se indica el formato destino
deseado.

Ejemplo de entrada:

text

|5|trivia|name
question|type|answer|difficulty
text|text
choices|order
choice|text

10|1|general
1|2|numeric|1000|0.1
2|3|Cuántos metros hay en un kilómetro?
1|2|single_choice|2|0.3
4|3|Quién tiene 4 estómagos?
4|4|random
6|5|Una gallina
6|5|Una vaca
6|5|El Botija
6|5|Una máquina tragamonedas

El programa que hace las conversiones está parcialmente implementado, pero se requiere que implemente tres
funciones recursivas en su clase Record: toText(), toXML() y toJSON(). El método toText() permite convertir el
archivo de registros a formato de texto. Retorna un String resultado de concatenar todos los contenidos de texto
(nodeValue) del registro en que se invoca y su descendencia. Recibe por parámetro un texto separador. Por ejemplo,
si se usa como separador un cambio de línea ("\n") producirá la siguiente salida:

Ejemplo de salida de texto:

Cuántos metros hay en un kilómetro?
Quién tiene 4 estómagos?
Una gallina
Una vaca
El Botija
Una máquina tragamonedas

[Opcional en papel, obligatorio en digital]. El segundo método recursivo de Record es toXML(). Recibe un
entero que indica el nivel de anidamiento (indentación). Retorna un String resultado de convertir ese registro y
registros hijos en texto XML, como se ve abajo. Cada registro se convierte a un elemento XML. Recuerde que un
elemento se compone de tres partes: una etiqueta de apertura (opening tag), un contenido que puede ser texto u
otros elementos (por simplicidad asuma que son excluyentes), y una etiqueta de cierre (closing tag).

Ejemplo de salida XML:

<trivia name="general">
 <question type="numeric" answer="1000" difficulty="0.1">
 <text>Cuántos metros hay en un kilómetro?</text>
 </question>
 <question type="single_choice" answer="2" difficulty="0.3">
 <text>Quién tiene 4 estómagos?</text>
 <choices order="random">
 <choice>Una gallina</choice>
 <choice>Una vaca</choice>
 <choice>El Botija</choice>
 <choice>Una máquina tragamonedas</choice>
 </choices>
 </question>
</trivia>

[Opcional disponible sólo en versión digital]. El tercer método recursivo de Record es toJSON(). Al igual que el
método anterior, produce un String resultado de convertir el registro y sus hijos a formato JSON.

Código fuente dado:

import java.util.Scanner;

/** Reads record files and convert them to plain text, XML or JSON */
public class Solution
{
 /** Gets data from standard input */
 private Scanner input = null;

 /**
 * Start the execution of the solution
 * @param args Command line arguments
 */
 public static void main(String args[])
 {
 Solution solution = new Solution();
 solution.run();
 }

 /** Run the solution. This method is called from main() */
 public void run()
 {
 // Create object to read data from standard input
 this.input = new Scanner(System.in);

 // Read the target format and ignore the extra new line
 String targetFormat = this.input.nextLine();
 this.input.nextLine();

 // Create the object that will do the conversion
 RecordLoader recordLoader = new RecordLoader();

 // Read the metadata file and ignore the extra new line
 recordLoader.loadMetadata(this.input);
 this.input.nextLine();

 // Read the data file
 Record data = recordLoader.loadData(this.input);

 // Print the data according to the target format
 switch (targetFormat)
 {
 case "text": System.out.print(data.toText("\n")); break;
 case "xml" : System.out.print(data.toXML(0)); break;
 case "json": System.out.print(data.toJSON(0)); break;
 }

 // Close the standard input
 this.input.close();
 }
}

http://jeisson.ecci.ucr.ac.cr/appweb/material/#js_objects

