Universidad de Costa Rica Examen 01 CI-1201 Programacion II - 2016b
Escuela de Computacion 08-Oct-2016 Profesor Jeisson Hidalgo-Céspedes

En cada ejercicio se evaluara la eficiencia del codigo, el uso de identificadores significativos, la indentacion, escritura
correcta de llaves {} y el uso adecuado de la palabra reservada const. Se dispone de dos horas para entregar la prueba y

debe realizarse en forma estrictamente individual.

Problema 1: ¢puede formar palindromo?

Para el desarrollo de un videojuego de palabras se necesita una funcién
que dadas unas letras (un texto), indique si con ellas se puede o no formar
al menos un texto palindromo, pues este hecho puede favorecer o no la
puntuacién del jugador. Un palindromo es un texto que se puede leer igual
de derecha a izquierda que en el sentido opuesto.

El equipo del videojuego requiere que ademas de la funcién, usted provea
un pequefio programa que permita probarla. El programa debe leer textos
de la entrada estandar, y para cada uno de ellos indicar con un 1 si se
puede formar al menos un palindromo y con 0 lo contrario, como se ve a
la derecha. Aunque en el juego no se usan textos mas largos de 100
letras, el equipo quisiera poder probar textos de hasta 1000 letras en
inglés, todas en minuscula.

1. [5%] Implementa programa de prueba correctamente.

2. [15%] Implementa correctamente funcién que determina si un texto
puede formar palindromo.

3. [5%] Aplica buenas practicas de programacion.

Problema 2: ts

Ejemplo de entrada:

parar
ranarene
soldadosolo

Ejemplo de salida:

parar: 1
ranarene: 0
soldadosolo:

1

1. [5%] ¢Qué imprime en la salida estandar el 1. #include <stdio.h>
programa de la derecha? 2
2. [10%] Rastree la memoria del programa. 3. const char* ts(unsigned long long n)
Su dibujo debe ilustrar el estado del 4. { _
programa cuando el control estd por iniciar 2' Sta’.“:fcgar,.fﬁq;
la ejecucién de la linea 20. 0 sprintf(b, “sllu’, n);
o
3. [5 /o_],Descrlba qué trabajo realiza la 8. char *p = b;
funcion ts(). o - 9. while (*p)
4. [5%] éCuales serian identificadores 10. ++p;
significativos para las siguientes variables:? 11.
o b 12. char* q =p + (p-b -1) / 3;
° p 13. for (short ¢ = 0; p < g; ++c)
14. {
° g
15. *gq-- = *p--—;
°c 16. if (c&& ¢c %3 ==20)
o ts *Qg=—— = ', "
. C . . 17. q 1o
5. [5% opcional] éQué imprime el programa si 18. }
la linea 25 se reeplaza por printf("[%s] 19.
[$s]\n", ts(1234567890ull), ts(0));. 20. return b;
Explique rapidamente. ;; }
23. int main()
24. {
25. printf("[%s]\n", ts(1234567890ull));
26. return 0;
27. }

mailto:jeissonh@gmail.com

Problema 3: Gauss-Jordan

La eliminacién de Gauss Jordan es un método algebraico
para resolver un sistema de n ecuaciones con n incégnitas.
Varios software matematicos populares realizan este
proceso y reportan el resultado, pero no los pasos que
realizaron para llegar a él. Estos pasos son muy Uutiles para
estudiantes de cursos de algebra.

Implemente un programa que realiza la eliminacion de
Gauss-Jordan e imprime los pasos que aplico en el proceso.
El programa lee de la entrada estandar una matriz
aumentada de n ecuaciones con n incégnitas. El nimero en
la primera fila indica este tamafio n. Cada fila representa
una ecuacion, con los coeficientes las n variables y el valor
de equivalencia. Por ejemplo la segunda fila en el ejemplo
de la derecha representa la ecuacion 3x; + 5x, + 8x3 = 63.
El programa debe transformar la matriz aumentada en una
matriz identidad siguiendo el algoritmo de Gauss-Jordan:

1. Por cada fila (o ecuacién) £ de la matriz:

a. Hacer el elemento de la diagonal de esa fila M¢ ¢ en
1, multiplicando la ecuacion completa por el inverso
de m¢ ¢. Por ejemplo, para la fila £=1 (linea 1 en el
ejemplo de salida) se tiene que M, ,;,=3.0, por lo que
todos los coeficientes de la fila £=1 se dividiran por
3.0 para convertir a M; ; en 1. Esta es la primera
operacion (f1 /= 3.0, impresa en la linea 5 del
ejemplo de salida) y el resultado se ve en la
segunda matriz impresa entre las lineas 6 a 8 del
ejemplo de la derecha.

b. Por cada una de las restantes filas (0 ecuaciones)
g.

a. Tomar el opuesto aditivo de yg, ¢, lldamese -u; ;.
Por ejemplo, para la segunda ecuacién g=2 (en
la linea 7) se toma -Mg ¢ = -M, ; = -2.0 COMO
opuesto aditivo.

b. Por cada columna c de la fila o ecuacién g:

a. Sumar al coeficiente my . el resultado de
multiplicar el opuesto -Mg, ¢ con M¢ . para
convertir a Mg ¢ en 0.0. Por ejemplo el 0.0
de la segunda ecuacién g=2 en la primera
columna c=1 (linea 13) se obtiene como

M += -M * Mg o, €S decir, My | += -2.0

g,¢c g,f

Ejemplo de entrada:

=W N
e e e o

N WWw
(6]
[ee)
)]
w

3.0 5.0
2.0 3.0
1.0 2.0
f1 /= 3.0
1.0 1.7
2.0 3.0
1.0 2.0

1.0 0.0
-0.0 1.0
0.0 0.0

£f3 /= 1.0:
1.0 0.0
-0.0 1.0
0.0 0.0

N

w o ©
« e e

w o N
o o e

O OoON
. .

= O O
o« e e

[SUIEN N o O o O o

o

o

o

o O o

63.
41.
24.

21.
41.
24.

N W o N W o w w
. . o o e

N 3
« e e

. .
o O o

. .
o O o

0
0
0

0
0
0

o O o

o O O

* 1.0 => 0.0. Para la segunda columna c=3 se tendrd My, += -My ¢ * Mg . => My ;

+= -2.0 * 2.66 => 6.0 += -2.0 * 2.66 => 6.0 += -5.33 => 0.66 (aparece

redondeado como 0.7 en linea 13).

En cada paso, se debe imprimir las operaciones sobre las filas que se le estan aplicando a la matriz
(por ejemplo £1 /= 3.0 indica que se esta dividiendo por 3.0 todos los coeficientes de la fila 1). Tras
aplicar el algoritmo a todas las filas, se debe obtener la matriz identidad que encuentra los valores

solucidn al sistema de ecuaciones.

1. [5%] Lee matrices reales correctamente de la entrada estandar.

2. [10%] El programa se puede usar con matrices muy grandes (por ejemplo, mayores a 8MB) sin

producir fugas de memoria.

3. [20%] Implementa correctamente la reduccion de Gauss-Jordan.

4. [10%] Imprime cada una de las operaciones en las filas.

5. [5%] Imprime el estado de la matriz en cada una de las operaciones.

