Universidad de Costa Rica Examen 02 CI-1201 Programacioén II - 2016b
Escuela de Computacion 05-Dic-2016 Profesor Jeisson Hidalgo-Céspedes

En cada ejercicio se evaluara la eficiencia del codigo, el uso de identificadores significativos, la indentacion, escritura correcta de llaves {} y el
uso adecuado de la palabra reservada const. Se dispone de tres horas para entregar la prueba y debe realizarse en forma estrictamente
individual.

Las matrices son estructuras de datos importantes para resolver una cantidad importante de problemas en
ciencias de la computacioén. Sin embargo, su programacién es un poco compleja en lenguajes como C/C++.
Escriba una plantilla para generar clases Matriz (en inglés Matrix) que faciliten el trabajo con matrices de dos
dimensiones de valores de tipos arbitrarios de datos. Debe implementar al menos los siguientes miembros.

1. [5%] Miembros de datos. Debe almacenar los valores de la matriz en memoria dinamica. Tenga en
cuenta que la expresidn new tipo datos[n][m] NO es valida en C++. Provee métodos de acceso a los datos:
rows () Y cols(), que retornan la cantidad de filas y columnas en la matriz.

2. [10%] Constructor por defecto. Crea una matriz no valida de tamafio 0x0, también llamada matriz nula.
Util para indicar resultados de operaciones no validas. Debe imprimirse como " (null)", sin las comillas.
Constructor Matrix(n,m). Crea una matriz de n filas por m columnas de valores. Si alguno de los valores n
0 m son cero, crea una matriz nula.

3. [15%] Regla de los cinco. Dado que la clase mMatrix utiliza memoria dindmica, debe evitar fugas de
memoria 0 accesos invalidos a toda costa.

4. [5%] Operador de conversion a booleano. Si una matriz se usa en un contexto booleano, debe
evaluarse como false si es la matriz nula, true en cualquier otro caso. Operador ! se evalla como true Si
la matriz es nula, false en cualquier otro caso.

5. [10%] Operador (i,j). Sobrecarga del operador paréntesis para acceder al valor (i,j) de la matriz. Debe
tener sus dos variantes: acceso en modo sélo lectura y en modo escritura. Asume que los indices i y j son
validos. Es decir, si se utilizan valores fuera de rango hara que el programa se caiga. El mismo
comportamiento si se invoca este operador en una matriz nula.

6. [10%] Operador + y Operador -. Permite sumar o restar dos objetos matriz de/ mismo tamafio. Si son de
distinto tamafio se producira la matriz nula. La suma de dos matrices Ayym + Bnxm €S UNa Matriz Cpxm
resultado de sumar cada entrada respectiva de ambas matrices. De forma andloga la resta de dos matrices
es la resta de sus respectivas entradas. Es decir:

Apxm + Bpson = Cosemn = Cij = ajj + btj
Ansim — Busxim = Crsxem = Cij = dyjj — bl]

7. [5%] Producto por un escalar. Con el operador *. El producto de una matriz a4, con un valor r es una
matriz c,xn resultado de multiplicar r por cada entrada de a. Debe implementar esta operacion en forma
conmutiativa. Matematicamente:

r ¥ Apscm = Cosim = Cjj =T *aj

8. [15%] Producto de dos matrices. También con el operador *. El producto de una matriz A, COn una
matriz Byyp €S Una matriz cnyp, denotado por:

m

Apxm X Bmxp = Cnxp — Cjj = Z aikbkj
k=1

Note las restricciones de tamafio que deben cumplir las matrices para poderse multiplicar, de lo contrario,
se debe retornar la matriz nula.

9. [15%] Operador += y operador -=. Permiten sumar y restar una matriz con otra y almacenar el
resultado en la matriz que aparece en el lado izquierdo del operador. El operador *= permite multiplicar la
matriz por un escalar o por otra matriz y almacenar el resultado en la matriz que aparece en el lado
izquierdo del operador.

10. [10%] operator >>: permite leer una matriz de un archivo. No debe imprimir nada en la salida estandar,
solo leer las entradas una tras otra del archivo. Operador <<: imprime la matriz a un archivo separando
las entradas un tabulador y las filas por cambios de linea. Para efectos de este examen, el operador << no
debe tener acceso directo a los miembros de la clase.



Su clase Matrix debe hacer funcionar el siguiente main():

#include "Matrix.h"

int main()

{
size_ t n = 0, m = 0;
std::cout << "Matrix 1 (nxm): ";
std::cin >> n; std::cin.ignore(); std::cin >> m;
Matrix<double> ml(n, m);
std::cin >> ml;
std::cout << "Matrix 2 (nxm): ";
std::cin >> n; std::cin.ignore(); std::cin >> m;
Matrix<double> m2(n, m);
std::cin >> m2;
std::cout << "ml + m2 =" << std::endl << ml + m2 << std::endl;
std::cout << "ml - m2 =" << std::endl << ml - m2 << std::endl;
std::cout << ".5 * m2 =" << std::endl << .5 * m2 << std::endl;
std::cout << "ml * m2 =" << std::endl << ml * m2 << std::endl;
return 0;

}

Ejemplos de ejecucion:

Matrix 1 (nxm): 2x3
1 -2 3
-3 0 4

Matrix 2 (nxm): 2x3

3 0 -4
-1 1 2
ml + m2 =

4 -2 -1
-4 1 6
ml - m2 =
-2 =2 7
-2 -1 2
.5 m2 =

1.5 0 -2
-0.5 0.5 1
ml * m2 =
(null)

Matrix 1 (nxm): 2x3

I
=
I
N o
=N

Matrix 2 (nxm): 3x4
2 1 3 1

-2 -1 0 -1
1 0 -1 -3

ml + m2
(null)

ml - m2
(null)

.5 * m2
1 0. 1.5 0.5
0 -0.5

0.5 0 -0.5 -1.5

v,

-5
-2

s
=
|




