
Universidad de Costa Rica
Escuela de Computación

Examen 02
05-Dic-2016

CI-1201 Programación II - 2016b
Profesor Jeisson Hidalgo-Céspedes

En cada ejercicio se evaluará la eficiencia del código, el uso de identificadores significativos, la indentación, escritura correcta de llaves {} y el
uso adecuado de la palabra reservada const. Se dispone de tres horas para entregar la prueba y debe realizarse en forma estrictamente
individual.

Las matrices son estructuras de datos importantes para resolver una cantidad importante de problemas en
ciencias de la computación. Sin embargo, su programación es un poco compleja en lenguajes como C/C++.
Escriba una plantilla para generar clases Matriz (en inglés Matrix) que faciliten el trabajo con matrices de dos
dimensiones de valores de tipos arbitrarios de datos. Debe implementar al menos los siguientes miembros.

[5%] Miembros de datos. Debe almacenar los valores de la matriz en memoria dinámica. Tenga en
cuenta que la expresión new tipo_datos[n][m] no es válida en C++. Provee métodos de acceso a los datos:
rows() y cols(), que retornan la cantidad de filas y columnas en la matriz.

1.

[10%] Constructor por defecto. Crea una matriz no válida de tamaño 0x0, también llamada matriz nula.
Útil para indicar resultados de operaciones no válidas. Debe imprimirse como "(null)", sin las comillas.
Constructor Matrix(n,m). Crea una matriz de n filas por m columnas de valores. Si alguno de los valores n
ó m son cero, crea una matriz nula.

2.

[15%] Regla de los cinco. Dado que la clase Matrix utiliza memoria dinámica, debe evitar fugas de
memoria o accesos inválidos a toda costa.

3.

[5%] Operador de conversión a booleano. Si una matriz se usa en un contexto booleano, debe
evaluarse como false si es la matriz nula, true en cualquier otro caso. Operador ! se evalúa como true si
la matriz es nula, false en cualquier otro caso.

4.

[10%] Operador (i,j). Sobrecarga del operador paréntesis para acceder al valor (i,j) de la matriz. Debe
tener sus dos variantes: acceso en modo sólo lectura y en modo escritura. Asume que los índices i y j son
válidos. Es decir, si se utilizan valores fuera de rango hará que el programa se caiga. El mismo
comportamiento si se invoca este operador en una matriz nula.

5.

[10%] Operador + y Operador -. Permite sumar o restar dos objetos matriz del mismo tamaño. Si son de
distinto tamaño se producirá la matriz nula. La suma de dos matrices Anxm + Bnxm es una matriz Cnxm
resultado de sumar cada entrada respectiva de ambas matrices. De forma análoga la resta de dos matrices
es la resta de sus respectivas entradas. Es decir:

6.

[5%] Producto por un escalar. Con el operador *. El producto de una matriz Anxm con un valor r es una
matriz Cnxm resultado de multiplicar r por cada entrada de A. Debe implementar esta operación en forma
conmutiativa. Matemáticamente:

7.

[15%] Producto de dos matrices. También con el operador *. El producto de una matriz Anxm con una
matriz Bmxp es una matriz Cnxp, denotado por:

Note las restricciones de tamaño que deben cumplir las matrices para poderse multiplicar, de lo contrario,
se debe retornar la matriz nula.

8.

[15%] Operador += y operador -=. Permiten sumar y restar una matriz con otra y almacenar el
resultado en la matriz que aparece en el lado izquierdo del operador. El operador *= permite multiplicar la
matriz por un escalar o por otra matriz y almacenar el resultado en la matriz que aparece en el lado
izquierdo del operador.

9.

[10%] operator >>: permite leer una matriz de un archivo. No debe imprimir nada en la salida estándar,
sólo leer las entradas una tras otra del archivo. Operador <<: imprime la matriz a un archivo separando
las entradas un tabulador y las filas por cambios de línea. Para efectos de este examen, el operador << no
debe tener acceso directo a los miembros de la clase.

10.

+ = ⟹ = +An×m Bn×m Cn×m cij aij bij

− = ⟹ = −An×m Bn×m Cn×m cij aij bij

r ∗ = ⟹ = r ∗An×m Cn×m cij aij

× = ⟹ =An×m Bm×p Cn×p cij ∑
k=1

m

aikbkj

Su clase Matrix debe hacer funcionar el siguiente main():

#include "Matrix.h"

int main()
{

size_t n = 0, m = 0;

 std::cout << "Matrix 1 (nxm): ";
 std::cin >> n; std::cin.ignore(); std::cin >> m;

Matrix<double> m1(n, m);
 std::cin >> m1;

 std::cout << "Matrix 2 (nxm): ";
 std::cin >> n; std::cin.ignore(); std::cin >> m;

Matrix<double> m2(n, m);
 std::cin >> m2;

 std::cout << "m1 + m2 =" << std::endl << m1 + m2 << std::endl;
 std::cout << "m1 - m2 =" << std::endl << m1 - m2 << std::endl;
 std::cout << ".5 * m2 =" << std::endl << .5 * m2 << std::endl;
 std::cout << "m1 * m2 =" << std::endl << m1 * m2 << std::endl;

return 0;
}

Ejemplos de ejecución:

Matrix 1 (nxm): 2x3
1 -2 3

-3 0 4

Matrix 2 (nxm): 2x3
3 0 -4

-1 1 2

m1 + m2 =
4 -2 -1

-4 1 6

m1 - m2 =
-2 -2 7
-2 -1 2

.5 * m2 =
1.5 0 -2

-0.5 0.5 1

m1 * m2 =
(null)

Matrix 1 (nxm): 2x3
1 0 2

-1 -2 1

Matrix 2 (nxm): 3x4
2 1 3 1

-2 -1 0 -1
1 0 -1 -3

m1 + m2 =
(null)

m1 - m2 =
(null)

.5 * m2 =
1 0.5 1.5 0.5

-1 -0.5 0 -0.5
0.5 0 -0.5 -1.5

m1 * m2 =
4 1 1 -5
3 1 -4 -2

