Examen 01
20-May-2017

Universidad de Costa Rica
Escuela de Computacion

CI-1201 Programacion II - 2017a
Profesor Jeisson Hidalgo-Céspedes

En cada ejercicio se evaluara la eficiencia del codigo, el uso de identificadores significativos, la indentacion, escritura correcta de
llaves {} y el uso adecuado de la palabra reservada const. Se dispone de tres horas para entregar la prueba y debe realizarse en

forma estrictamente individual.

Problema 1: Paréntesis balanceados [55%]

Para un editor de textos orientado a programadores y
matematicos, se necesita una funcion que reciba una cadena de
caracteres de cualquier longitud y determine si todos los
paréntesis en ella estan balanceados. Se consideran paréntesis a
las tres parejas de caracteres: (), {} Y [1-

La funcion recibe por parametro una cadena de caracteres y la
longitud de la misma como un entero largo. La funcién debe
retornar un entero que indica la posicion del primer paréntesis
no balanceado en la cadena, con el fin de que el editor pueda
posicionar el cursor del usuario donde deba realizar la correccion.
Si la cadena se termina y quedan paréntesis abiertos, debe
retornar la posicién del ultimo paréntesis abierto. Si los
paréntesis en la cadena estan balanceados, la funcion debe
retornar la posicién -1.

Dado que la funcidn se va a invocar muchas veces mientras el
usuario edita un archivo de texto, la funcién sélo debe hacer un
unico recorrido por la cadena. La cadena tampoco debe ser
modificada por la funcién, ya que el editor le pasara
directamente el texto que edita el usuario, y no se quiere realizar
copias de la misma, ya que consumirian tiempo y espacio.

Los desarrolladores del editor requieren que usted demuestre
gue la funcién haga bien su trabajo. Provea un pequeno
programa que lea lineas de la entrada estandar, y para cada una
de ellas indique en la salida estandar la posiciéon donde se
encuentre el primer paréntesis no balanceado, o el texto "ok" si
estan balanceados, como se muestra a la derecha.

1. [5%] Implementa un programa de prueba correctamente.
2. [20%] Implementa correctamente la funcién que encuentra
el primer paréntesis no balanceado o el ultimo que quedd

abierto.

3. [10%] Realiza un unico recorrido por la cadena sin
modificarla. No genera fallos ain con cadenas muy extensas.

4. [15%] Rastree la memoria del programa. Su dibujo debe
ilustrar el estado del programa en el momento inmediato en
gue ha detectado que la linea 3 del ejemplo de entrada no
tiene los paréntesis balanceados. Debe indicar el nUmero de
linea en su programa donde esto ocurre. Si hace su dibujo a
lapiz, no borre memoria modificada, sino tache para dejar
rastro de lo ocurrido.

5. [5%] Documenta el cddigo explicando el algoritmo
implementado.

6. [10% opcional] Escriba una rutina que lea lineas de un
archivo o la entrada estandar y al mismo tiempo cuente la
cantidad de caracteres leidos. Sugerencia: dado que las
cadenas que puede leer son de longitudes arbitrarias no
conocidas, haga a su funcién leer en un bufer al que pueda
hacer crecer con realloc(ptr,size).

Ejemplo de entrada:

: (practica para examen):

va

—~ e~ o~ — o~ —~

—(-2 = =3)%4 / [(5 - 2]"10)

lor de x: [seleccion unica]
) x=(-3)"-10

} x=37-10

) x=1/3"10

) x=-(3)"-10

) x={-(3)"10,%x>0]|(-3)"10,%<0
) no se :{

1(){az(a-(--b)):(b-(--a))}
? [seleccion multiple]

] puntero a funcion

[funcion lambda

] macro (preprocesador

] plantilla

Ejemplo de salida:

ok

:: (practica para examen):

ok:

24
ok

ok:
02:
00:
ok:
06:
11:

ix=-(-2 - =3)%4 / [(5 - 2]°10)
:valor de x: [seleccion unica]
) x=(-3)"-10

x=3"-10

x=1/3"10

x=-(3)"-10

x={-(3)"10,%x>0]| (-3)"10,%<0
no se :{

~ e~ o~ — o~ o~
_— = — — o~

ok:

ok:
ok:
ok:
02:[
10:
ok:

[=1(){a?(a-(--b)):(b-(--a))}
es? [seleccion multiple]
[1 puntero a funcion
[funcion lambda
[] macro (preprocesador
[1 plantilla

mailto:jeisson.hidalgo@ucr.ac.cr

Problema 2: Validador de Sudoku [45%]

Implemente un validador de Sudoku, el cual podria ser usado
para saber si juegos digitalizados de las primeras revistas no
tienen errores, o para ayudar a personas a crear nuevos retos de
este juego. El Sudoku tiene soélo tres reglas:

1. Cada fila debe tener los nimeros de 1 a 9 sin que se repitan.

2. Cada columna debe tener los nimeros de 1 a 9 sin que se
repitan.

3. Cada caja o regidn (resaltada en borde negro grueso) debe
tener los nimeros de 1 a 9 sin que se repitan.

El programa debe leer tableros de Sudoku de la entrada
estandar. Los tableros podrian estar parcialmente llenos, donde
las celdas llenas se indican con el nUmero que contienen y las
vacias con el caracter punto ('.").

Su programa debe determinar si el tablero de Sudoku leido de la
entrada estandar es valido, y en tal caso imprimir el texto
"valid" en la salida estandar. Si el tablero no es valido, se debe
indicar la celda donde se detectd el error, antecedido por una de
las letras: 'r' para fila, 'c' para columna, 6 'b' para caja. En el
ejemplo de la derecha se detecté que el valor de la celda en Ila
fila 5 y columna 4 genera una caja (b) invalida. En caso de que
hayan multiples errores en un tablero, sélo se reporta el primero
de ellos, siguiendo el orden de evaluacién de las tres letras
indicadas, y el orden de lectura izquierda-derecha y arriba-abajo.

Nota: un tablero de Sudoku valido (parcialmente lleno) no es
necesariamente resoluble. Su programa sélo debe validar que las
celdas llenas cumplan con las tres reglas anteriores,
indiferentemente de si el tablero es resoluble o no.

Los tableros de Sudoku en la entrada deben constar de 9 filas de
9 caracteres separadas por cambios de linea. Sin embargo, por
errores de digitacion o de reconocimiento de caracteres a partir
de documentos histdéricos, podrian aparecer caracteres no
esperados (por ejemplo un '0' en lugar de un '8') o tableros
incompletos. En tal caso, se debe imprimir la celda donde se
detecta el error usando la notacion anterior.

1. [5%] Disena una solucién y la documenta en el cédigo.
Modulariza la solucién en funciones que podrian ser
reutilizadas.

2. [5%] Lee tableros de Sudoku correctamente de la entrada
estandar. Reporta errores de lectura.

3. [20%] Implementa correctamente la validacién del tablero
de Sudoku, aplicando las tres reglas a las celdas llenas (con
valores).

4. [5%] Reporta errores de validez en la salida estandar usando
la notacion solicitada y en el orden de evaluacion solicitado.

5. [10%] Se quiere que la funcion que realiza la evaluacion del
tablero sea reutilizable. Esta funcion debe indicar al llamador
si el tablero es valido o no, y en caso de no serlo, donde se
encuentra el error. Invocar a esta funcion no debe reportar
errores en la salida estandar (el cual debe ser trabajo de otra
funcién). Dado que el programa debe apegarse a las buenas
practicas de programacion y de eficiencia, tampoco debe
usar variables globales.

3 7
1
9|8
8 6
8
7 2
6
a1
8

.6....28.
...419..5
ce..8..79

Ejemplo de salida:

b5,4

