
Universidad de Costa Rica
Escuela de Computación

Examen 01
20­May­2017

CI­1201 Programación II ­ 2017a
Profesor Jeisson Hidalgo­Céspedes

En cada ejercicio se evaluará la eficiencia del código, el uso de identificadores significativos, la indentación, escritura correcta de
llaves {} y el uso adecuado de la palabra reservada const. Se dispone de tres horas para entregar la prueba y debe realizarse en
forma estrictamente individual.

Problema 1: Paréntesis balanceados [55%]

Para un editor de textos orientado a programadores y
matemáticos, se necesita una función que reciba una cadena de
caracteres de cualquier longitud y determine si todos los
paréntesis en ella están balanceados. Se consideran paréntesis a
las tres parejas de caracteres: (), {} y [].

La función recibe por parámetro una cadena de caracteres y la
longitud de la misma como un entero largo. La función debe
retornar un entero que indica la posición del primer paréntesis
no balanceado en la cadena, con el fin de que el editor pueda
posicionar el cursor del usuario donde deba realizar la corrección.
Si la cadena se termina y quedan paréntesis abiertos, debe
retornar la posición del último paréntesis abierto. Si los
paréntesis en la cadena están balanceados, la función debe
retornar la posición -1.

Dado que la función se va a invocar muchas veces mientras el
usuario edita un archivo de texto, la función sólo debe hacer un
único recorrido por la cadena. La cadena tampoco debe ser
modificada por la función, ya que el editor le pasará
directamente el texto que edita el usuario, y no se quiere realizar
copias de la misma, ya que consumirían tiempo y espacio.

Los desarrolladores del editor requieren que usted demuestre
que la función haga bien su trabajo. Provea un pequeño
programa que lea líneas de la entrada estándar, y para cada una
de ellas indique en la salida estándar la posición donde se
encuentre el primer paréntesis no balanceado, o el texto "ok" si
están balanceados, como se muestra a la derecha.

1. [5%] Implementa un programa de prueba correctamente.
2. [20%] Implementa correctamente la función que encuentra
el primer paréntesis no balanceado o el último que quedó
abierto.

3. [10%] Realiza un único recorrido por la cadena sin
modificarla. No genera fallos aún con cadenas muy extensas.

4. [15%] Rastree la memoria del programa. Su dibujo debe
ilustrar el estado del programa en el momento inmediato en
que ha detectado que la línea 3 del ejemplo de entrada no
tiene los paréntesis balanceados. Debe indicar el número de
línea en su programa donde esto ocurre. Si hace su dibujo a
lápiz, no borre memoria modificada, sino tache para dejar
rastro de lo ocurrido.

5. [5%] Documenta el código explicando el algoritmo
implementado.

6. [10% opcional] Escriba una rutina que lea líneas de un
archivo o la entrada estándar y al mismo tiempo cuente la
cantidad de caracteres leídos. Sugerencia: dado que las
cadenas que puede leer son de longitudes arbitrarias no
conocidas, haga a su función leer en un búfer al que pueda
hacer crecer con realloc(ptr,size).

Ejemplo de entrada:

:(practica para examen):

x=-(-2 - -3)^4 / [(5 - 2]^10)
valor de x: [seleccion unica]
() x=(-3)^-10
(} x=3^-10
)) x=1/3^10
() x=-(3)^-10
() x={-(3)^10,x>0|(-3)^10,x<0
() no se :{

[=](){a?(a-(--b)):(b-(--a))}
es? [seleccion multiple]
[] puntero a funcion
[[funcion lambda
[] macro (preprocesador
[] plantilla
...

Ejemplo de salida:

ok::(practica para examen):
ok:
24:x=-(-2 - -3)^4 / [(5 - 2]^10)
ok:valor de x: [seleccion unica]
ok:() x=(-3)^-10
02:(} x=3^-10
00:)) x=1/3^10
ok:() x=-(3)^-10
06:() x={-(3)^10,x>0|(-3)^10,x<0
11:() no se :{
ok:
ok:[=](){a?(a-(--b)):(b-(--a))}
ok:es? [seleccion multiple]
ok:[] puntero a funcion
02:[[funcion lambda
10:[] macro (preprocesador
ok:[] plantilla

mailto:jeisson.hidalgo@ucr.ac.cr

Problema 2: Validador de Sudoku [45%]

Implemente un validador de Sudoku, el cual podría ser usado
para saber si juegos digitalizados de las primeras revistas no
tienen errores, o para ayudar a personas a crear nuevos retos de
este juego. El Sudoku tiene sólo tres reglas:

1. Cada fila debe tener los números de 1 a 9 sin que se repitan.
2. Cada columna debe tener los números de 1 a 9 sin que se
repitan.

3. Cada caja o región (resaltada en borde negro grueso) debe
tener los números de 1 a 9 sin que se repitan.

El programa debe leer tableros de Sudoku de la entrada
estándar. Los tableros podrían estar parcialmente llenos, donde
las celdas llenas se indican con el número que contienen y las
vacías con el carácter punto ('.').

Su programa debe determinar si el tablero de Sudoku leído de la
entrada estándar es válido, y en tal caso imprimir el texto
"valid" en la salida estándar. Si el tablero no es válido, se debe
indicar la celda donde se detectó el error, antecedido por una de
las letras: 'r' para fila, 'c' para columna, ó 'b' para caja. En el
ejemplo de la derecha se detectó que el valor de la celda en la
fila 5 y columna 4 genera una caja (b) inválida. En caso de que
hayan múltiples errores en un tablero, sólo se reporta el primero
de ellos, siguiendo el orden de evaluación de las tres letras
indicadas, y el orden de lectura izquierda­derecha y arriba­abajo.

Nota: un tablero de Sudoku válido (parcialmente lleno) no es
necesariamente resoluble. Su programa sólo debe validar que las
celdas llenas cumplan con las tres reglas anteriores,
indiferentemente de si el tablero es resoluble o no.

Los tableros de Sudoku en la entrada deben constar de 9 filas de
9 caracteres separadas por cambios de línea. Sin embargo, por
errores de digitación o de reconocimiento de caracteres a partir
de documentos históricos, podrían aparecer caracteres no
esperados (por ejemplo un '0' en lugar de un '8') o tableros
incompletos. En tal caso, se debe imprimir la celda donde se
detecta el error usando la notación anterior.

1. [5%] Diseña una solución y la documenta en el código.
Modulariza la solución en funciones que podrían ser
reutilizadas.

2. [5%] Lee tableros de Sudoku correctamente de la entrada
estándar. Reporta errores de lectura.

3. [20%] Implementa correctamente la validación del tablero
de Sudoku, aplicando las tres reglas a las celdas llenas (con
valores).

4. [5%] Reporta errores de validez en la salida estándar usando
la notación solicitada y en el orden de evaluación solicitado.

5. [10%] Se quiere que la función que realiza la evaluación del
tablero sea reutilizable. Esta función debe indicar al llamador
si el tablero es válido o no, y en caso de no serlo, dónde se
encuentra el error. Invocar a esta función no debe reportar
errores en la salida estándar (el cuál debe ser trabajo de otra
función). Dado que el programa debe apegarse a las buenas
prácticas de programación y de eficiencia, tampoco debe
usar variables globales.

Ejemplo de entrada:

53..7....
6..195...
.98....6.
8...6...3
4..6.3..1
7...2...6
.6....28.
...419..5
....8..79

Ejemplo de salida:

b5,4

