
Universidad de Costa Rica
Escuela de Computación

Examen 02
24­Jun­2017

CI­1201 Programación II ­ 2017a
Profesor Jeisson Hidalgo­Céspedes

En cada ejercicio se evaluará la eficiencia del código, el uso de identificadores significativos, la indentación, escritura correcta de
llaves {}, el uso adecuado de la palabra reservada const, el uso de copias, punteros y referencias. Se dispone de tres horas para
entregar la prueba y debe realizarse en forma estrictamente individual. Dado que esta prueba evalúa la creación de contededores
genéricos, NO se pueden usar contendores de la biblioteca estándar o de cualquier otra biblioteca.

Evaluador de expresiones aritméticas

En un proyecto de software se necesita que la computadora evalúe expresiones aritméticas ingresadas por los
usuarios. Se le pide a usted que implemente un eficiente evaluador de expresiones aritméticas. Además es
importante que el evaluador sea versátil, porque los usuarios pueden ingresar números de diversa naturaleza,
por ejemplo: enteros, reales, fracciones, complejos, polinomios, coordenadas polares, números de precisión
arbitraria, y cualquier tipo de datos que reaccione a los operadores aritméticos

Una expresión aritmética es combinación de valores y operadores, que al evaluarse produce un único valor.
Los operadores tienen reglas de aridad (cantidad de operandos), asociatividad y precedencia. Para esta
versión se necesita que el evaluador sea capaz de trabajar con los cuatro operadores binarios básicos: suma
(+), resta (­), multiplicación (*) y división (/). La asociatividad de todos ellos es de izquierda a derecha. La
prioridad de esos cuatro operadores es la aprendida en matemática de secundaria. Es decir, la multiplicación
y división tienen prioridad sobre la suma y la resta, a menos de que el usuario la cambie usando los
operadores paréntesis ().

Indagando por Internet, usted encuentra que se puede implementar un eficiente evaluador de expresiones
aritméticas usando dos pilas, una para los operadores y otra para los operandos (valores). El algoritmo que
realiza la evaluación de la expresión se conoce en inglés como shunting yard y una simplificación es la
siguiente:

Sea operadores una pila vacía para operadores (caracteres)
Sea valores una pila vacía para valores
Repita:
 Trate de leer un valor de la entrada
 Si pudo leer un valor, apílelo (push) en la pila de valores
 De lo contrario
 Trate de leer un operador de la entrada
 Si no pudo leer un operador, termine el ciclo
 Si el operador es:
 Un paréntesis que abre (:
 Apílelo (push) en la pila de operadores
 Un paréntesis que cierra):
 Mientras el operador en el tope de la pila no sea el '('
 Llame a aplicar el operador en el tope de la pila
 Retire (pop) el operador '(' de la pila
 Un operador op aritmético +, -, *, /:
 Mientras hayan operadores en la pila con mayor prioridad que op
 Llame a aplicar el operador en el tope de la pila
 Apile (push) a op en la pila de operadores

Mientras hayan operadores pendientes en la pila
 Llame a aplicar el operador en el tope de la pila

El resultado de la expresión estará en el tope de la pila de valores

Aplicar el operador en el tope de la pila:
 Retire (pop) el tope de la pila de operadores y guárdelo en op
 Retire (pop) el tope de la pila de valores y guárdelo en b
 Retire (pop) el tope de la pila de valores y guárdelo en a
 Retorne el resultado de la operación a op b, de acuerdo al operador op

mailto:jeisson.hidalgo@ucr.ac.cr

Dado que se quiere que el software en C++ pueda trabajar con muchos tipos de números, usted implementa
una plantilla para generar clases evaluadoras de expresiones aritméticas. La plantilla debe ser capaz de hacer
funcionar el siguiente programa de pruebas:

int main()
{
 std::string dataTypeName;
 std::cin >> dataTypeName;

 if (dataTypeName == "integer")
 return std::cout << ExpressionEvaluator<int>().evaluate(std::cin) << std::endl, 0;
 if (dataTypeName == "real")
 return std::cout << ExpressionEvaluator<double>().evaluate(std::cin) << std::endl, 0;
 if (dataTypeName == "fraction")
 return std::cout << ExpressionEvaluator<Fraction>().evaluate(std::cin) << std::endl, 0;
 if (dataTypeName == "complex")
 return std::cout << ExpressionEvaluator<std::complex<double>>().evaluate(std::cin)
 << std::endl, 0;

 return 1;
}

Ejemplo de entrada:

integer

1 - 2 * (3 - 4) + 5

Ejemplo de salida:

8

Evaluación

1. [5%] Plantilla Stack. Implementa una plantilla de clases Stack que puede alojar una cantidad arbitraria
de elementos en memoria dinámica discontinua.

2. [5%] Constructor por defecto crea una pila vacía. Método empty() indica si la pila está vacía.
3. [15%] Regla de los cinco de Stack. Dado que la clase Stack utiliza memoria dinámica, debe evitar fugas
de memoria, accesos inválidos y aprovecharse de objetos temporales que no van a ser utilizados más
durante la ejecución del programa.

4. [10%] Método push() inserta un elemento en la pila. Método top permite acceder al elemento en el tope
de la pila. Debe poder permitir modificar el elemento si la pila se puede modificar, o dar acceso de sólo
lectura si la pila no se puede modificar.

5. [10%] Método pop() retira y retorna el elemento en el tope de la pila.
6. [5%] Plantilla ExpressionEvaluator. Implementa una plantilla de clases ExpressionEvaluator que
puede evaluar expresiones aritméticas de cualquier tipo de datos que implemente los operadores
aritméticos.

7. [15%] Regla de los cinco de ExpressionEvaluator ¿Cuál estrategia escogería para aplicar la regla de los
cinco a las clases ExpressionEvaluator: dejar los métodos por defecto, eliminarlos, o sobrescribirlos?
Justifique su decisión e refléjela en el código. En su justificación indique cómo su decisión no genera fugas
de memoria y cómo los usuarios de su clase podrían verse beneficiados o limitados.

8. [25%] Shunting Yard Algorithm. Implementa la adaptación del algoritmo shunting yard que permite
leer expresiones del flujo de datos provisto por parámetro, evaluarlas y retornar el valor resultado de la
evaluación. Usa su plantilla Stack para implementar el algoritmo.

9. [10%] Métodos utilitarios de ExpressionEvaluator. Implementa métodos utilitarios, como aplicar
operadores, y determinar la precedencia de los mismos.

