Universidad de Costa Rica Examen 02 CI-1201 Programacion II - 2017a
Escuela de Computacion 24-Jun-2017 Profesor Jeisson Hidalgo-Céspedes

En cada ejercicio se evaluara la eficiencia del cédigo, el uso de identificadores significativos, la indentacion, escritura correcta de
llaves {}, el uso adecuado de la palabra reservada const, el uso de copias, punteros y referencias. Se dispone de tres horas para
entregar la prueba y debe realizarse en forma estrictamente individual. Dado que esta prueba evalda la creacion de contededores
genéricos, NO se pueden usar contendores de la biblioteca estandar o de cualquier otra biblioteca.

Evaluador de expresiones aritméticas

En un proyecto de software se necesita que la computadora evallie expresiones aritméticas ingresadas por los
usuarios. Se le pide a usted que implemente un eficiente evaluador de expresiones aritméticas. Ademas es
importante que el evaluador sea versatil, porque los usuarios pueden ingresar nimeros de diversa naturaleza,
por ejemplo: enteros, reales, fracciones, complejos, polinomios, coordenadas polares, nimeros de precision
arbitraria, y cualquier tipo de datos que reaccione a los operadores aritméticos

Una expresion aritmética es combinacién de valores y operadores, que al evaluarse produce un Unico valor.
Los operadores tienen reglas de aridad (cantidad de operandos), asociatividad y precedencia. Para esta
version se necesita que el evaluador sea capaz de trabajar con los cuatro operadores binarios basicos: suma
(+), resta (-), multiplicacion (*) y divisién (/). La asociatividad de todos ellos es de izquierda a derecha. La
prioridad de esos cuatro operadores es la aprendida en matematica de secundaria. Es decir, la multiplicacion
y divisidn tienen prioridad sobre la suma y la resta, a menos de que el usuario la cambie usando los
operadores paréntesis ().

Indagando por Internet, usted encuentra que se puede implementar un eficiente evaluador de expresiones
aritméticas usando dos pilas, una para los operadores y otra para los operandos (valores). El algoritmo que
realiza la evaluacidn de la expresidon se conoce en inglés como shunting yard y una simplificacion es la
siguiente:

Sea operadores una pila vacia para operadores (caracteres)
Sea valores una pila vacia para valores
Repita:
Trate de leer un valor de la entrada
Si pudo leer un valor, apilelo (push) en la pila de valores
De lo contrario
Trate de leer un operador de la entrada
Si no pudo leer un operador, termine el ciclo
Si el operador es:
Un paréntesis que abre (:
Apilelo (push) en la pila de operadores
Un paréntesis que cierra):
Mientras el operador en el tope de la pila no sea el '(
Llame a aplicar el operador en el tope de la pila
Retire (pop) el operador '(' de la pila
Un operador op aritmético +, -, *, /:
Mientras hayan operadores en la pila con mayor prioridad que op
Llame a aplicar el operador en el tope de la pila
Apile (push) a op en la pila de operadores

Mientras hayan operadores pendientes en la pila
Llame a aplicar el operador en el tope de la pila

El resultado de la expresidon estard en el tope de la pila de valores

Aplicar el operador en el tope de la pila:
Retire (pop) el tope de la pila de operadores y guédrdelo en op
Retire (pop) el tope de la pila de valores y guardelo en b
Retire (pop) el tope de la pila de valores y guardelo en a
Retorne el resultado de la operacidén a op b, de acuerdo al operador op

mailto:jeisson.hidalgo@ucr.ac.cr

Dado que se quiere que el software en C++ pueda trabajar con muchos tipos de nimeros, usted implementa
una plantilla para generar clases evaluadoras de expresiones aritméticas. La plantilla debe ser capaz de hacer
funcionar el siguiente programa de pruebas:

int main()

{
std::string dataTypeName;
std::cin >> dataTypeName;

if (dataTypeName == "integer")

return std::cout << ExpressionEvaluator<int>().evaluate(std::cin) << std::endl, 0;
if (dataTypeName == "real")

return std::cout << ExpressionEvaluator<double>().evaluate(std::cin) << std::endl, 0;
if (dataTypeName == "fraction")

return std::cout << ExpressionEvaluator<Fraction>().evaluate(std::cin) << std::endl, 0;
if (dataTypeName == "complex")

return std::cout << ExpressionEvaluator<std::complex<double>>().evaluate(std::cin)
<< std::endl, O0;

return 1;

Ejemplo de entrada:

integer

1-2%(3-4)+5

Ejemplo de salida:

Evaluacion

W N

. [5%] Plantilla Stack. Implementa una plantilla de clases stack que puede alojar una cantidad arbitraria

de elementos en memoria dinamica discontinua.

. [5%] Constructor por defecto crea una pila vacia. Método empty() indica si la pila esta vacia.
. [15%] Regla de los cinco de stack. Dado que la clase stack utiliza memoria dindmica, debe evitar fugas

de memoria, accesos invalidos y aprovecharse de objetos temporales que no van a ser utilizados mas
durante la ejecucion del programa.

. [10%] Método push() inserta un elemento en la pila. Método top permite acceder al elemento en el tope

de la pila. Debe poder permitir modificar el elemento si la pila se puede modificar, o dar acceso de sélo
lectura si la pila no se puede modificar.

. [10%] Método pop () retira y retorna el elemento en el tope de la pila.
. [5%] Plantilla ExpressionEvaluator. Implementa una plantilla de clases ExpressionEvaluator que

puede evaluar expresiones aritméticas de cualquier tipo de datos que implemente los operadores
aritméticos.

. [15%] Regla de los cinco de ExpressionEvaluator ¢Cudl estrategia escogeria para aplicar la regla de los

cinco a las clases ExpressionEvaluator: dejar los métodos por defecto, eliminarlos, o sobrescribirlos?
Justifique su decisién e refléjela en el cddigo. En su justificacién indique cédmo su decisién no genera fugas
de memoria y cdmo los usuarios de su clase podrian verse beneficiados o limitados.

. [25%] Shunting Yard Algorithm. Implementa la adaptacion del algoritmo shunting yard que permite

leer expresiones del flujo de datos provisto por parametro, evaluarlas y retornar el valor resultado de la
evaluacion. Usa su plantilla stack para implementar el algoritmo.

. [10%] Métodos utilitarios de ExpressionEvaluator. Implementa métodos utilitarios, como aplicar

operadores, y determinar la precedencia de los mismos.

